Talia Echeverria, Francesco Bernasconi, Paweł P. Ziemiański, David Reber
{"title":"Impact of Thermal Electrode Activation on Electrocatalyst Performance in KCrPDTA/K4Fe(CN)6 Flow Batteries","authors":"Talia Echeverria, Francesco Bernasconi, Paweł P. Ziemiański, David Reber","doi":"10.1002/batt.202400696","DOIUrl":null,"url":null,"abstract":"<p>Improving electrode performance is crucial for increasing energy efficiency and power density in redox flow batteries. Here, we study the effects of thermal activation of carbon paper electrodes on the performance of bismuth as an electrocatalyst in high-voltage KCrPDTA/K<sub>4</sub>Fe(CN)<sub>6</sub> flow batteries. While thermal activation improves wettability and surface area, it also leads to the formation of large, agglomerated bismuth deposits that reduce Coulombic efficiency. Although bismuth lowers cell resistance and enhances voltage efficiency, it promotes parasitic hydrogen evolution depending on its morphology, underscoring the need for optimized catalyst deposition techniques.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400696","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving electrode performance is crucial for increasing energy efficiency and power density in redox flow batteries. Here, we study the effects of thermal activation of carbon paper electrodes on the performance of bismuth as an electrocatalyst in high-voltage KCrPDTA/K4Fe(CN)6 flow batteries. While thermal activation improves wettability and surface area, it also leads to the formation of large, agglomerated bismuth deposits that reduce Coulombic efficiency. Although bismuth lowers cell resistance and enhances voltage efficiency, it promotes parasitic hydrogen evolution depending on its morphology, underscoring the need for optimized catalyst deposition techniques.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.