Diffusion Coefficient and Viscosity of Methyl Viologen Electrolyte Estimation Based on a Kinetic Monte Carlo Computational Approach Coupled with the Mean Square Displacement Method

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Dr. Jia Yu, Prof. Dr. Emmanuel Baudrin, Prof. Dr. Alejandro A. Franco
{"title":"Diffusion Coefficient and Viscosity of Methyl Viologen Electrolyte Estimation Based on a Kinetic Monte Carlo Computational Approach Coupled with the Mean Square Displacement Method","authors":"Dr. Jia Yu,&nbsp;Prof. Dr. Emmanuel Baudrin,&nbsp;Prof. Dr. Alejandro A. Franco","doi":"10.1002/batt.202400430","DOIUrl":null,"url":null,"abstract":"<p>Methyl viologen (MV) and its derivatives are emerging as promising candidates within the organic redox flow battery community due to their commendable reversibility and rapid reaction kinetics. However, experimental observations reveal the influence of solute concentration on the diffusion coefficient and the tendency of <i>MV</i><sup><i>+</i></sup> to form dimers or multimers, affecting electrolyte viscosity. Traditional characterization methods may not fully capture these properties. To explore concentration and state of charge effects on diffusion coefficient and viscosity, a kinetic Monte Carlo (kMC) model coupled with mean square displacement analysis is introduced. The kMC model offers a 3D simulation space with expandable periodic boundary conditions, enabling realistic ion movement. The mean square displacement (MSD) algorithm extracts diffusion coefficients, followed by the estimation of the electrolyte viscosity using the Stokes-Einstein equation. Validation with NaCl solutions precedes adaptation to simulate <i>MV</i><sup><i>+</i></sup>⋅diffusion coefficients at 1.5 M with varying states of charge (SoC), aligning with experimental data. Simulation results indicate increased multimerization at higherSoCs. The diffusion coefficient of fully charged <i>MV</i><sup><i>+</i></sup>⋅decreases with electrolyte concentration due to dimer and multimer formation. This modeling approach provides insights into <i>MV</i><sup><i>+</i></sup>⋅behavior, crucial for organic redox flow battery development.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202400430","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400430","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Methyl viologen (MV) and its derivatives are emerging as promising candidates within the organic redox flow battery community due to their commendable reversibility and rapid reaction kinetics. However, experimental observations reveal the influence of solute concentration on the diffusion coefficient and the tendency of MV+ to form dimers or multimers, affecting electrolyte viscosity. Traditional characterization methods may not fully capture these properties. To explore concentration and state of charge effects on diffusion coefficient and viscosity, a kinetic Monte Carlo (kMC) model coupled with mean square displacement analysis is introduced. The kMC model offers a 3D simulation space with expandable periodic boundary conditions, enabling realistic ion movement. The mean square displacement (MSD) algorithm extracts diffusion coefficients, followed by the estimation of the electrolyte viscosity using the Stokes-Einstein equation. Validation with NaCl solutions precedes adaptation to simulate MV+⋅diffusion coefficients at 1.5 M with varying states of charge (SoC), aligning with experimental data. Simulation results indicate increased multimerization at higherSoCs. The diffusion coefficient of fully charged MV+⋅decreases with electrolyte concentration due to dimer and multimer formation. This modeling approach provides insights into MV+⋅behavior, crucial for organic redox flow battery development.

Abstract Image

基于动力学蒙特卡洛计算方法和均方根位移法估算甲基病毒灵电解质的扩散系数和粘度
甲基紫素(MV)及其衍生物因其良好的可逆性和快速的反应动力学而成为有机氧化还原液流电池领域中有前途的候选者。然而,实验观察显示溶质浓度对扩散系数和MV+形成二聚体或多聚体的倾向有影响,从而影响电解质粘度。传统的表征方法可能无法完全捕捉到这些特性。为了探讨浓度和电荷状态对扩散系数和粘度的影响,引入了一种结合均方位移分析的动力学蒙特卡罗(kMC)模型。kMC模型提供了一个具有可扩展周期性边界条件的三维模拟空间,实现了真实的离子运动。均方位移(MSD)算法提取扩散系数,然后利用Stokes-Einstein方程估计电解质粘度。采用NaCl溶液进行验证,模拟1.5 M时不同荷电状态下的MV+⋅扩散系数,与实验数据一致。仿真结果表明,在更高的soc上,多路化增加。由于二聚体和多聚体的形成,充满电的MV+⋅扩散系数随电解质浓度的增加而降低。这种建模方法可以深入了解MV+⋅行为,这对有机氧化还原液流电池的开发至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信