Acid Etching-Driven Self-Assembly of Mn-Shell Inducing Rock-Salt Phase for Enhanced Single-Crystal Ni-Rich Cathodes

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Xiaotu Ma, Zifei Meng, Jiahui Hou, Zeyi Yao, Zexin Wang, Fulya Dogan, Zhenzhen Yang, Maksim Sultanov, Guanhui Gao, Hua Guo, Yimo Han, Jianguo Wen, Yan Wang
{"title":"Acid Etching-Driven Self-Assembly of Mn-Shell Inducing Rock-Salt Phase for Enhanced Single-Crystal Ni-Rich Cathodes","authors":"Xiaotu Ma,&nbsp;Zifei Meng,&nbsp;Jiahui Hou,&nbsp;Zeyi Yao,&nbsp;Zexin Wang,&nbsp;Fulya Dogan,&nbsp;Zhenzhen Yang,&nbsp;Maksim Sultanov,&nbsp;Guanhui Gao,&nbsp;Hua Guo,&nbsp;Yimo Han,&nbsp;Jianguo Wen,&nbsp;Yan Wang","doi":"10.1002/batt.202400501","DOIUrl":null,"url":null,"abstract":"<p>With the wide adoption of Li-ion batteries, Ni-rich cathode is considered as one of the most promising candidates of cathodes due to its high energy density and low cost. However, stability decreased with increasing Ni content in the Ni-rich cathode. To solve this bottleneck, many strategies, such as coating, doping, surface modification, and special morphologies, have been developed. Herein, we introduce a groundbreaking approach for enhancing Ni-rich cathode through an innovative acid etching process that promotes Mn shell self-assembly, inducing a rock-salt phase on the surface. This method not only simplifies the Ni-rich cathode modification process, but also significantly improves the structural stability and electrochemical performance of Ni-rich cathode. Our findings demonstrate that developed single-crystal Ni-rich cathode shows 3–34 % better stability compared to both commercial modified Ni-rich cathode and unmodified counterparts. The unique Mn shell effectively mitigates reversible phase shifts during cycling, contributing to a remarkable enhancement in cycling stability. This novel fabrication technique paves the way for cost-effective production of high-performance cathode materials, offering substantial benefits for lithium-ion battery technology. And this study proves the potential of this method in advancing the design and development of durable, high-capacity cathode materials for next-generation batteries.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400501","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

With the wide adoption of Li-ion batteries, Ni-rich cathode is considered as one of the most promising candidates of cathodes due to its high energy density and low cost. However, stability decreased with increasing Ni content in the Ni-rich cathode. To solve this bottleneck, many strategies, such as coating, doping, surface modification, and special morphologies, have been developed. Herein, we introduce a groundbreaking approach for enhancing Ni-rich cathode through an innovative acid etching process that promotes Mn shell self-assembly, inducing a rock-salt phase on the surface. This method not only simplifies the Ni-rich cathode modification process, but also significantly improves the structural stability and electrochemical performance of Ni-rich cathode. Our findings demonstrate that developed single-crystal Ni-rich cathode shows 3–34 % better stability compared to both commercial modified Ni-rich cathode and unmodified counterparts. The unique Mn shell effectively mitigates reversible phase shifts during cycling, contributing to a remarkable enhancement in cycling stability. This novel fabrication technique paves the way for cost-effective production of high-performance cathode materials, offering substantial benefits for lithium-ion battery technology. And this study proves the potential of this method in advancing the design and development of durable, high-capacity cathode materials for next-generation batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信