{"title":"Nonlinear Subwavelength Resonances in Three Dimensions","authors":"Habib Ammari, Thea Kosche","doi":"10.1111/sapm.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the resonance problem for the cubic nonlinear Helmholtz equation in the subwavelength regime. We derive a discrete model for approximating the subwavelength resonances of finite systems of high-contrast resonators with Kerr-type nonlinearities. Our discrete formulation is valid in both weak and strong nonlinear regimes. Compared to the linear formulation, it characterizes the extra experimentally observed eigenmodes that are induced by the nonlinearities.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the resonance problem for the cubic nonlinear Helmholtz equation in the subwavelength regime. We derive a discrete model for approximating the subwavelength resonances of finite systems of high-contrast resonators with Kerr-type nonlinearities. Our discrete formulation is valid in both weak and strong nonlinear regimes. Compared to the linear formulation, it characterizes the extra experimentally observed eigenmodes that are induced by the nonlinearities.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.