Jean Charlier, Alice Aléon-Toppani, Rosario Brunetto, Jérôme Aléon, Ferenc Borondics
{"title":"Mid-infrared detection and characterization of refractory inclusions in CM and CO chondrites: A non-destructive approach for returned space samples","authors":"Jean Charlier, Alice Aléon-Toppani, Rosario Brunetto, Jérôme Aléon, Ferenc Borondics","doi":"10.1111/maps.14314","DOIUrl":null,"url":null,"abstract":"<p>Refractory inclusions (RIs) in chondrites are widely used as tracers of early solar system formation conditions. In the context of sample-return missions, a non-destructive and non-invasive analytical tool that can rapidly detect and characterize RIs in space samples during their early phase of study is highly needed. Here, we performed mid-infrared (MIR) fine-scale hyperspectral imaging over large fields of view to detect RIs in CM and CO chondrites. A database of MIR spectra of typical RIs minerals was built (1) to support future remote sensing observations in astronomical environments and (2) to develop a detection method based on machine-learning algorithms and spectral distance between sample and reference minerals. With this method, up to 96.5% of the RI content is detected in a meteorite section. Further comparison between scanning electron microscopy and spot analysis acquired in reflectance in the full MIR range shows that RIs can be classified following their mineralogy based on infrared (IR) properties. Finally, we show that the relative OH content of several RIs in CM chondrites determined from IR spectroscopy can be used to infer the extent of modification caused by aqueous alteration on the asteroidal parent body.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 3","pages":"544-569"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14314","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14314","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Refractory inclusions (RIs) in chondrites are widely used as tracers of early solar system formation conditions. In the context of sample-return missions, a non-destructive and non-invasive analytical tool that can rapidly detect and characterize RIs in space samples during their early phase of study is highly needed. Here, we performed mid-infrared (MIR) fine-scale hyperspectral imaging over large fields of view to detect RIs in CM and CO chondrites. A database of MIR spectra of typical RIs minerals was built (1) to support future remote sensing observations in astronomical environments and (2) to develop a detection method based on machine-learning algorithms and spectral distance between sample and reference minerals. With this method, up to 96.5% of the RI content is detected in a meteorite section. Further comparison between scanning electron microscopy and spot analysis acquired in reflectance in the full MIR range shows that RIs can be classified following their mineralogy based on infrared (IR) properties. Finally, we show that the relative OH content of several RIs in CM chondrites determined from IR spectroscopy can be used to infer the extent of modification caused by aqueous alteration on the asteroidal parent body.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.