Martin R. Lee, Cameron J. Floyd, Robin Haller, Sammy Griffin
{"title":"A primitive asteroid that lived fast and died young sampled by a xenolith in the Cold Bokkeveld CM2 carbonaceous chondrite","authors":"Martin R. Lee, Cameron J. Floyd, Robin Haller, Sammy Griffin","doi":"10.1111/maps.14310","DOIUrl":null,"url":null,"abstract":"<p>Xenoliths in carbonaceous chondrites include lithologies that are unrepresented in the meteorite record and so are a rich source of information on asteroid diversity. Cold Bokkeveld is a CM2 regolith breccia that contains both hydrous and anhydrous lithic clasts. Here, we describe a hydrous clast with a fine-grained rim. This rim shows that the clast is a xenolith that interacted with dust in the protoplanetary disk between liberation from its protolith and incorporation into Cold Bokkeveld's parent body. Prior to its fragmentation, the xenolith's protolith had undergone brittle deformation, with the fractures produced being cemented by carbonates to make veins. After being incorporated into Cold Bokkeveld's parent body, the veined xenolith experienced a second phase of aqueous alteration leading to hydration of its fine-grained rim, replacement of carbonate by tochilinite–cronstedtite intergrowths, and formation of magnetite within its fine-grained matrix. The veined xenolith's protolith underwent its entire geological evolution (accretion–aqueous alteration–fracturing–fragmentation) before Cold Bokkeveld's parent body had accreted. Such a short lifespan may be explained by explosive breakup of the protolith due to overpressure from gases produced internally during water–rock interaction. Early fragmentation effectively acted as a thermostat to limit runaway heating that may have otherwise resulted from the body's high concentrations of <sup>26</sup>Al. Many other hydrous lithic clasts in CM carbonaceous chondrite meteorites could be the remains of such ephemeral early asteroids, but they are hard to identify without evidence that they were accreted as hydrous lithologies and contemporaneously with chondrules.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 3","pages":"464-483"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.14310","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14310","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Xenoliths in carbonaceous chondrites include lithologies that are unrepresented in the meteorite record and so are a rich source of information on asteroid diversity. Cold Bokkeveld is a CM2 regolith breccia that contains both hydrous and anhydrous lithic clasts. Here, we describe a hydrous clast with a fine-grained rim. This rim shows that the clast is a xenolith that interacted with dust in the protoplanetary disk between liberation from its protolith and incorporation into Cold Bokkeveld's parent body. Prior to its fragmentation, the xenolith's protolith had undergone brittle deformation, with the fractures produced being cemented by carbonates to make veins. After being incorporated into Cold Bokkeveld's parent body, the veined xenolith experienced a second phase of aqueous alteration leading to hydration of its fine-grained rim, replacement of carbonate by tochilinite–cronstedtite intergrowths, and formation of magnetite within its fine-grained matrix. The veined xenolith's protolith underwent its entire geological evolution (accretion–aqueous alteration–fracturing–fragmentation) before Cold Bokkeveld's parent body had accreted. Such a short lifespan may be explained by explosive breakup of the protolith due to overpressure from gases produced internally during water–rock interaction. Early fragmentation effectively acted as a thermostat to limit runaway heating that may have otherwise resulted from the body's high concentrations of 26Al. Many other hydrous lithic clasts in CM carbonaceous chondrite meteorites could be the remains of such ephemeral early asteroids, but they are hard to identify without evidence that they were accreted as hydrous lithologies and contemporaneously with chondrules.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.