A Hybrid Transfer Learning Framework for Brain Tumor Diagnosis

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Sadia Islam Tonni, Md. Alif Sheakh, Mst. Sazia Tahosin, Md. Zahid Hasan, Taslima Ferdaus Shuva, Touhid Bhuiyan, Muhammad Ali Abdullah Almoyad, Nabil Anan Orka, Md. Tanvir Rahman, Risala Tasin Khan, M. Shamim Kaiser, Mohammad Ali Moni
{"title":"A Hybrid Transfer Learning Framework for Brain Tumor Diagnosis","authors":"Sadia Islam Tonni,&nbsp;Md. Alif Sheakh,&nbsp;Mst. Sazia Tahosin,&nbsp;Md. Zahid Hasan,&nbsp;Taslima Ferdaus Shuva,&nbsp;Touhid Bhuiyan,&nbsp;Muhammad Ali Abdullah Almoyad,&nbsp;Nabil Anan Orka,&nbsp;Md. Tanvir Rahman,&nbsp;Risala Tasin Khan,&nbsp;M. Shamim Kaiser,&nbsp;Mohammad Ali Moni","doi":"10.1002/aisy.202400495","DOIUrl":null,"url":null,"abstract":"<p>Brain tumors are among the most severe health challenges, necessitating early and precise diagnosis for effective treatment planning. This study introduces an optimized hybrid transfer learning (TL) framework for brain tumor classification using magnetic resonance imaging images. The proposed system integrates advanced preprocessing techniques, an ensemble of pretrained deep learning models, and explainable artificial intelligence (XAI) methods to achieve high accuracy and reliability. The methodology enhances image quality through noise reduction and contrast enhancement, facilitating robust feature extraction. The ensemble model combines VGG16 and ResNet152V2 architectures, achieving a classification accuracy of 99.47% on a challenging four-class dataset. Additionally, gradient-weighted class activation mapping and SHapley Additive exPlanations (SHAP)-based XAI techniques provide visual and quantitative insights into model predictions, improving interpretability and clinical trust. This comprehensive framework demonstrates the potential of hybrid TL and XAI in advancing diagnostic accuracy and supporting clinical decision-making for brain tumor detection. The results underscore its applicability in clinical settings, particularly in resource-constrained environments.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumors are among the most severe health challenges, necessitating early and precise diagnosis for effective treatment planning. This study introduces an optimized hybrid transfer learning (TL) framework for brain tumor classification using magnetic resonance imaging images. The proposed system integrates advanced preprocessing techniques, an ensemble of pretrained deep learning models, and explainable artificial intelligence (XAI) methods to achieve high accuracy and reliability. The methodology enhances image quality through noise reduction and contrast enhancement, facilitating robust feature extraction. The ensemble model combines VGG16 and ResNet152V2 architectures, achieving a classification accuracy of 99.47% on a challenging four-class dataset. Additionally, gradient-weighted class activation mapping and SHapley Additive exPlanations (SHAP)-based XAI techniques provide visual and quantitative insights into model predictions, improving interpretability and clinical trust. This comprehensive framework demonstrates the potential of hybrid TL and XAI in advancing diagnostic accuracy and supporting clinical decision-making for brain tumor detection. The results underscore its applicability in clinical settings, particularly in resource-constrained environments.

Abstract Image

用于脑肿瘤诊断的混合迁移学习框架
脑肿瘤是最严重的健康挑战之一,需要及早准确诊断以制定有效的治疗计划。本研究提出了一种优化的混合迁移学习框架,用于利用磁共振成像图像进行脑肿瘤分类。该系统集成了先进的预处理技术、预训练深度学习模型和可解释人工智能(XAI)方法,以实现高精度和可靠性。该方法通过降噪和对比度增强来提高图像质量,促进鲁棒特征提取。该集成模型结合了VGG16和ResNet152V2架构,在具有挑战性的四类数据集上实现了99.47%的分类准确率。此外,梯度加权类激活映射和基于SHapley加性解释(SHAP)的XAI技术为模型预测提供了可视化和定量的见解,提高了可解释性和临床信任度。这一综合框架展示了混合TL和XAI在提高诊断准确性和支持脑肿瘤检测临床决策方面的潜力。结果强调了其在临床环境中的适用性,特别是在资源有限的环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信