{"title":"Low Temperature and Rapid Synthesis of Li-Rich Li(Li0.17Mn0.83)2O4 Spinel Cathodes Derived from Metal-Organic Frameworks for Lithium-Ion Batteries","authors":"Ang Li, Ziqi Wang, Meihui Yu, Ze Chang","doi":"10.1002/batt.202400446","DOIUrl":null,"url":null,"abstract":"<p>Li-rich spinel materials (Li<sub>1+<i>x</i></sub>Mn<sub>2−<i>x</i></sub>O<sub>4</sub>) have shown promise for lithium-ion batteries. Nevertheless, the preparation of Li<sub>1+<i>x</i></sub>Mn<sub>2−<i>x</i></sub>O<sub>4</sub> faces significant challenges due to the difficulty in achieving a balance between well-crystallized phases and stoichiometric chemistry. Moreover, the synthesis process is highly sensitive to calcination temperature and time, making it susceptible to phase transformations. Therefore, the rational selection of precursors and corresponding calcination procedures is absolutely essential. Herein, we make full use of the nature of metal-organic frameworks (MOFs) to achieve phase-controlled synthesis of Li(Li<sub>0.17</sub>Mn<sub>0.83</sub>)<sub>2</sub>O<sub>4</sub> (LMO−F) spinel cathodes in 8 minutes at 500 °C. The composition and structural evolution during the pyrolysis process were systematically investigated to clarify the relationship between precursors and derivatives. Notably, the LMO−F achieved good electrochemical performance with 100.4 mAh g<sup><b>−</b>1</sup> at 50 mA g<sup><b>−</b>1</sup> after 100 cycles.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 3","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202400446","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Li-rich spinel materials (Li1+xMn2−xO4) have shown promise for lithium-ion batteries. Nevertheless, the preparation of Li1+xMn2−xO4 faces significant challenges due to the difficulty in achieving a balance between well-crystallized phases and stoichiometric chemistry. Moreover, the synthesis process is highly sensitive to calcination temperature and time, making it susceptible to phase transformations. Therefore, the rational selection of precursors and corresponding calcination procedures is absolutely essential. Herein, we make full use of the nature of metal-organic frameworks (MOFs) to achieve phase-controlled synthesis of Li(Li0.17Mn0.83)2O4 (LMO−F) spinel cathodes in 8 minutes at 500 °C. The composition and structural evolution during the pyrolysis process were systematically investigated to clarify the relationship between precursors and derivatives. Notably, the LMO−F achieved good electrochemical performance with 100.4 mAh g−1 at 50 mA g−1 after 100 cycles.
富锂尖晶石材料(Li1+xMn2−xO4)在锂离子电池中显示出前景。然而,Li1+xMn2−xO4的制备面临着巨大的挑战,因为难以实现良好结晶相和化学计量化学之间的平衡。此外,合成过程对煅烧温度和时间高度敏感,使其容易发生相变。因此,合理选择前驱体和相应的煅烧程序是绝对必要的。本文充分利用金属有机骨架(MOFs)的性质,在500℃下,在8分钟内实现了Li(Li0.17Mn0.83)2O4 (LMO−F)尖晶石阴极的相控合成。系统研究了热解过程中的组成和结构演变,阐明了前体与衍生物的关系。值得注意的是,经过100次循环,LMO−F在50 mA g−1下具有100.4 mAh g−1的良好电化学性能。
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.