The Habitat Alteration of Corrigiola Litoralis L. (Strapwort) on the Elbe River Driven by Climate Change

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY
Ecohydrology Pub Date : 2024-11-14 DOI:10.1002/eco.2730
Vojtěch Havlíček, Martin Heřmanovský, Luděk Bureš, Marta Martínková, Jan Čuda, Martin Hanel
{"title":"The Habitat Alteration of Corrigiola Litoralis L. (Strapwort) on the Elbe River Driven by Climate Change","authors":"Vojtěch Havlíček,&nbsp;Martin Heřmanovský,&nbsp;Luděk Bureš,&nbsp;Marta Martínková,&nbsp;Jan Čuda,&nbsp;Martin Hanel","doi":"10.1002/eco.2730","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study aims to determine the possible future development of areas suitable for <i>Corrigiola litoralis</i> L. (strapwort) at six research sites on the part of the Elbe River near the border with Germany under considered climate change. We have combined hydrological and hydraulic approaches with outputs from climate models representing future climate patterns to meet these objectives. The hydrological models used in this study were BILAN, GR4J and TUW, while the hydraulic calculations were performed using HEC-RAS. Climate data were derived from 216 climate models and grouped according to the projected change in mean temperature. Areas suitable for strapwort were identified based on conditions that reflect the ecological requirements of the species. The results show that increasing average temperatures and subsequent water level fluctuations will increase the number of seasons suitable for strapwort and its area of occurrence. These areas will emerge above water level for a longer period, extending the growing season of strapwort and increasing its reproductive capacity. At the same time, winter flooding of the sites will remain, which is likely to suppress perennial species that would competitively exclude strapwort. Regarding hydrological models, GR4J and TUW were consistent in their results. In contrast, due to the different structure, the BILAN model showed a different response to rainfall inputs, and the results were inconsistent with those of the above models. This finding highlights the need to select an appropriate hydrological model. In contrast, the sensitivity of the results to climate model variability was found to be relatively low.</p>\n </div>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":"18 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2730","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to determine the possible future development of areas suitable for Corrigiola litoralis L. (strapwort) at six research sites on the part of the Elbe River near the border with Germany under considered climate change. We have combined hydrological and hydraulic approaches with outputs from climate models representing future climate patterns to meet these objectives. The hydrological models used in this study were BILAN, GR4J and TUW, while the hydraulic calculations were performed using HEC-RAS. Climate data were derived from 216 climate models and grouped according to the projected change in mean temperature. Areas suitable for strapwort were identified based on conditions that reflect the ecological requirements of the species. The results show that increasing average temperatures and subsequent water level fluctuations will increase the number of seasons suitable for strapwort and its area of occurrence. These areas will emerge above water level for a longer period, extending the growing season of strapwort and increasing its reproductive capacity. At the same time, winter flooding of the sites will remain, which is likely to suppress perennial species that would competitively exclude strapwort. Regarding hydrological models, GR4J and TUW were consistent in their results. In contrast, due to the different structure, the BILAN model showed a different response to rainfall inputs, and the results were inconsistent with those of the above models. This finding highlights the need to select an appropriate hydrological model. In contrast, the sensitivity of the results to climate model variability was found to be relatively low.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Ecohydrology
Ecohydrology 环境科学-生态学
CiteScore
5.10
自引率
7.70%
发文量
116
审稿时长
24 months
期刊介绍: Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management. Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信