Physical properties, internal structure, and the three-dimensional petrography of CI chondrites

IF 2.2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Jon M. Friedrich, Eva M. Riveros, Robert J. Macke, Steven J. Jaret, Mark L. Rivers, Denton S. Ebel
{"title":"Physical properties, internal structure, and the three-dimensional petrography of CI chondrites","authors":"Jon M. Friedrich,&nbsp;Eva M. Riveros,&nbsp;Robert J. Macke,&nbsp;Steven J. Jaret,&nbsp;Mark L. Rivers,&nbsp;Denton S. Ebel","doi":"10.1111/maps.14320","DOIUrl":null,"url":null,"abstract":"<p>CI chondrites are poorly lithified and highly friable regolith breccias. To examine their physical properties and the nature of their breccation, we investigated nine samples of the Ivuna and Orgueil CI chondrites ranging in size from 1 mm to 4 cm in approximate diameter. The combined mass of unique material investigated in this work is 113 g. For our investigations, we use ideal gas pycnometry, 3-D laser scanning, x-ray computed microtomography (μCT), and accompanying digital data extraction techniques. We found that the bulk density of the samples ranged from 1.61 to 2.10 g cm<sup>−3</sup>. Larger samples tend to have a lower bulk density. Grain density (ranging from 2.44 to 2.55 g cm<sup>−3</sup>) is significantly less variable than the bulk density in our samples and the quantity of porosity (ranging from 14.6% to 33.8%) is the dominant factor in determining the bulk density of CI chondrite material. Our μCT results show that the visible porosity across all sizes of our CI chondrite samples is in the form of cracks, but these cracks can account for less than two-thirds of the porosity in the CI chondrites. Other porosity is not visible, even at μCT resolutions of 2.7 μm voxel edge<sup>−1</sup> and we conclude that it is sub-micron in nature. It is not clear if the cracks seen in our samples are indigenous to the chondrites or are a result of terrestrial processes. We also find that the CI chondrites are excellent examples of the fractal-like nature of brecciation, where clasts can be observed at all scales we imaged. The breccias are composed of sub-equant-shaped and sub-rounded-textured clasts like melt-free impact breccias on other solar system bodies. From our μCT volume and digital data extraction, we determine that the Ivuna CI chondrite breccia is organized: the mostly sub-equant clasts within our ~2 cm chunk of Ivuna have a mean diameter of 1.33 mm and their aligned longest axes define a lineation structure. We speculate that the lineation was imparted after fragmentation of the clasts by slight shear on the parent asteroid which could be the result of seismic-related granular flow or mild non-axial impact-related compaction. These data will help to place returned asteroidal material from asteroids 162173 Ryugu and 101955 Bennu and the CI chondrites into a mutual geological context.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 3","pages":"632-645"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14320","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

CI chondrites are poorly lithified and highly friable regolith breccias. To examine their physical properties and the nature of their breccation, we investigated nine samples of the Ivuna and Orgueil CI chondrites ranging in size from 1 mm to 4 cm in approximate diameter. The combined mass of unique material investigated in this work is 113 g. For our investigations, we use ideal gas pycnometry, 3-D laser scanning, x-ray computed microtomography (μCT), and accompanying digital data extraction techniques. We found that the bulk density of the samples ranged from 1.61 to 2.10 g cm−3. Larger samples tend to have a lower bulk density. Grain density (ranging from 2.44 to 2.55 g cm−3) is significantly less variable than the bulk density in our samples and the quantity of porosity (ranging from 14.6% to 33.8%) is the dominant factor in determining the bulk density of CI chondrite material. Our μCT results show that the visible porosity across all sizes of our CI chondrite samples is in the form of cracks, but these cracks can account for less than two-thirds of the porosity in the CI chondrites. Other porosity is not visible, even at μCT resolutions of 2.7 μm voxel edge−1 and we conclude that it is sub-micron in nature. It is not clear if the cracks seen in our samples are indigenous to the chondrites or are a result of terrestrial processes. We also find that the CI chondrites are excellent examples of the fractal-like nature of brecciation, where clasts can be observed at all scales we imaged. The breccias are composed of sub-equant-shaped and sub-rounded-textured clasts like melt-free impact breccias on other solar system bodies. From our μCT volume and digital data extraction, we determine that the Ivuna CI chondrite breccia is organized: the mostly sub-equant clasts within our ~2 cm chunk of Ivuna have a mean diameter of 1.33 mm and their aligned longest axes define a lineation structure. We speculate that the lineation was imparted after fragmentation of the clasts by slight shear on the parent asteroid which could be the result of seismic-related granular flow or mild non-axial impact-related compaction. These data will help to place returned asteroidal material from asteroids 162173 Ryugu and 101955 Bennu and the CI chondrites into a mutual geological context.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信