Pronounced Underestimation of Surface Deformation Due To Unwrapping Errors Over Tibetan Plateau Permafrost by Sentinel-1 InSAR: Identification and Correction

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Chengyan Fan, Lin Liu, Zhuoyi Zhao, Cuicui Mu
{"title":"Pronounced Underestimation of Surface Deformation Due To Unwrapping Errors Over Tibetan Plateau Permafrost by Sentinel-1 InSAR: Identification and Correction","authors":"Chengyan Fan,&nbsp;Lin Liu,&nbsp;Zhuoyi Zhao,&nbsp;Cuicui Mu","doi":"10.1029/2024JF007854","DOIUrl":null,"url":null,"abstract":"<p>Surface deformation plays an important role in permafrost studies as it is closely associated with the hydrological-thermal dynamics of the active layer and permafrost, affecting the stability of infrastructure. In this study, we have identified a significant underestimation of surface deformation over permafrost using Sentinel-1 InSAR, which is attributed to unwrapping errors in interferograms. Specifically, the inclusion of interferograms with longer temporal baselines in the SBAS network will cause unwrapping errors to occur more frequently and severely, leading to a more pronounced underestimation, exceeding 3 times in severe cases. To address this issue, we propose a novel correction strategy to mitigate unwrapping errors by correcting long-span interferograms with reliable short-span interferograms in the temporal domain. Here, 12-day interferograms are utilized as the reliable interferograms for the correction. The results show that the seasonal deformation amplitude over an ice-rich permafrost location on the Tibetan Plateau increases to approximately 110 mm after applying the correction, compared to the previous underestimation of only about 28 mm. The proposed correction method facilitates accurate retrieval and verification permafrost products from InSAR time series, such as the ground ice/water storage and thickness of the active layer. This in turn deepens our understanding of surface deformation in permafrost regions under a warming climate. Moreover, the proposed correction method demonstrates its promise as an effective strategy for mitigating underestimation issues in various InSAR studies that suffer from unwrapping errors.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007854","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007854","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface deformation plays an important role in permafrost studies as it is closely associated with the hydrological-thermal dynamics of the active layer and permafrost, affecting the stability of infrastructure. In this study, we have identified a significant underestimation of surface deformation over permafrost using Sentinel-1 InSAR, which is attributed to unwrapping errors in interferograms. Specifically, the inclusion of interferograms with longer temporal baselines in the SBAS network will cause unwrapping errors to occur more frequently and severely, leading to a more pronounced underestimation, exceeding 3 times in severe cases. To address this issue, we propose a novel correction strategy to mitigate unwrapping errors by correcting long-span interferograms with reliable short-span interferograms in the temporal domain. Here, 12-day interferograms are utilized as the reliable interferograms for the correction. The results show that the seasonal deformation amplitude over an ice-rich permafrost location on the Tibetan Plateau increases to approximately 110 mm after applying the correction, compared to the previous underestimation of only about 28 mm. The proposed correction method facilitates accurate retrieval and verification permafrost products from InSAR time series, such as the ground ice/water storage and thickness of the active layer. This in turn deepens our understanding of surface deformation in permafrost regions under a warming climate. Moreover, the proposed correction method demonstrates its promise as an effective strategy for mitigating underestimation issues in various InSAR studies that suffer from unwrapping errors.

Abstract Image

哨兵-1 InSAR 对青藏高原冻土层解包误差导致的地表形变明显低估:识别与修正
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信