The Synthesis Effects on the Performance of P2-Na0.6Li0.27Mn0.73O2 Cathode Material for Sodium-Ion Batteries

Battery Energy Pub Date : 2025-02-16 DOI:10.1002/bte2.70000
Cuihong Zeng, Ziqin Zhang, Jiming Peng, Jia Qiao, Qichang Pan, Fenghua Zheng, Youguo Huang, Hongqiang Wang, Qingyu Li, Sijiang Hu
{"title":"The Synthesis Effects on the Performance of P2-Na0.6Li0.27Mn0.73O2 Cathode Material for Sodium-Ion Batteries","authors":"Cuihong Zeng,&nbsp;Ziqin Zhang,&nbsp;Jiming Peng,&nbsp;Jia Qiao,&nbsp;Qichang Pan,&nbsp;Fenghua Zheng,&nbsp;Youguo Huang,&nbsp;Hongqiang Wang,&nbsp;Qingyu Li,&nbsp;Sijiang Hu","doi":"10.1002/bte2.70000","DOIUrl":null,"url":null,"abstract":"<p>Sodium-layered oxides are a promising category of cathodes for sodium-ion batteries with high energy densities. The solid-state method is the typical approach to synthesizing these oxides because of its simple procedure and low cost. Although the reaction conditions have usually been understated, the effect of reagents has often been overlooked. Thus, fundamental insight into the chemical reagents is required to perform well. Here we report in situ structural and electrochemical methods of studying the effect of using different reagents. The materials have a composite structure containing layered NaMnO<sub>2</sub> and Li<sub>2</sub>MnO<sub>3</sub> components, where oxygen anionic redox can be triggered at high voltage by forming Na–O–Li configurations. The samples synthesized via MnCO<sub>3</sub>-based precursors form the Li<sub>2</sub>MnO<sub>3</sub> phase at evaluated temperature and perform better than those through MnO<sub>2</sub>-based precursors. This work demonstrates that the reagents also impact the structure and performance of sodium-layered oxides, which provides new insight into developing high-energy cathode material.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-layered oxides are a promising category of cathodes for sodium-ion batteries with high energy densities. The solid-state method is the typical approach to synthesizing these oxides because of its simple procedure and low cost. Although the reaction conditions have usually been understated, the effect of reagents has often been overlooked. Thus, fundamental insight into the chemical reagents is required to perform well. Here we report in situ structural and electrochemical methods of studying the effect of using different reagents. The materials have a composite structure containing layered NaMnO2 and Li2MnO3 components, where oxygen anionic redox can be triggered at high voltage by forming Na–O–Li configurations. The samples synthesized via MnCO3-based precursors form the Li2MnO3 phase at evaluated temperature and perform better than those through MnO2-based precursors. This work demonstrates that the reagents also impact the structure and performance of sodium-layered oxides, which provides new insight into developing high-energy cathode material.

Abstract Image

钠离子电池正极材料P2-Na0.6Li0.27Mn0.73O2的合成对性能的影响
钠层氧化物是一种很有前途的高能量密度钠离子电池阴极材料。固相法因其工艺简单、成本低而成为合成这些氧化物的典型方法。虽然反应条件通常被低估,但试剂的作用往往被忽视。因此,需要对化学试剂有基本的了解才能表现良好。本文报道了用原位结构和电化学方法研究不同试剂的效果。该材料具有层状NaMnO2和Li2MnO3组分的复合结构,在高压下形成Na-O-Li构型可触发氧阴离子氧化还原。以mnco3为基础的前驱体合成的样品在评价温度下形成Li2MnO3相,性能优于以mno2为基础的前驱体。这项工作表明,试剂也会影响钠层状氧化物的结构和性能,这为开发高能阴极材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信