{"title":"Realization of terahertz polarization conversion and wideband absorption device based on vanadium dioxide phase transition control","authors":"Xuehui Weng, Dexian Yan, Yingjue Cao, Xiangjun Li","doi":"10.1007/s00339-025-08392-3","DOIUrl":null,"url":null,"abstract":"<div><p>A multifunctional terahertz metamaterial device assisted by vanadium dioxide (VO<sub>2</sub>) is proposed. Leveraging the property that VO<sub>2</sub> can switch from an insulation state to metal state, the device can achieve linear-to-circular (LTC), linear-to-linear (LTL) polarization conversion, and wideband absorption. The investigation findings indicate that when VO<sub>2</sub> is in the insulating state, the structure can accomplish the corresponding LTL and LTC polarization conversions in the band of 1.0 -3.1 THz and 3.1–6.1 THz, respectively. When VO<sub>2</sub> is in the metallic phase, the device can achieve over 90% absorption from 3.10 THz to 4.95 THz, with the relative bandwidth of 46%. Furthermore, the impacts of structural dimensions, terahertz wave incident angles and polarization angles on the operating characteristics of multifunctional metamaterial structures have also been explored. The reported multifunctional metamaterial device demonstrates promising application in the area of terahertz technology research and intelligent application.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08392-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A multifunctional terahertz metamaterial device assisted by vanadium dioxide (VO2) is proposed. Leveraging the property that VO2 can switch from an insulation state to metal state, the device can achieve linear-to-circular (LTC), linear-to-linear (LTL) polarization conversion, and wideband absorption. The investigation findings indicate that when VO2 is in the insulating state, the structure can accomplish the corresponding LTL and LTC polarization conversions in the band of 1.0 -3.1 THz and 3.1–6.1 THz, respectively. When VO2 is in the metallic phase, the device can achieve over 90% absorption from 3.10 THz to 4.95 THz, with the relative bandwidth of 46%. Furthermore, the impacts of structural dimensions, terahertz wave incident angles and polarization angles on the operating characteristics of multifunctional metamaterial structures have also been explored. The reported multifunctional metamaterial device demonstrates promising application in the area of terahertz technology research and intelligent application.
期刊介绍:
Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.