The influence of crack tip dislocation emission on the fracture toughness

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lei Zhang, Erik van der Giessen, Francesco Maresca
{"title":"The influence of crack tip dislocation emission on the fracture toughness","authors":"Lei Zhang,&nbsp;Erik van der Giessen,&nbsp;Francesco Maresca","doi":"10.1007/s10704-025-00847-1","DOIUrl":null,"url":null,"abstract":"<div><p>Crack-tip dislocation emission is often considered to be the key mechanism that controls the so-called “intrinsically ductile” fracture behaviour. Yet, high fracture toughness and ductility in metals are determined by extensive plastic deformation that dissipates much more energy than solely due to the crack-tip emission process. Thus, there is a gap between intrinsically ductile behaviour and large toughness. Here, we implement the dislocation emission process within a 2D discrete dislocation plasticity (DDP) framework. The framework, which includes anisotropic elasticity and a cohesive-zone model to simulate crack propagation, enables to investigate the interplay between dislocation emission and near-crack-tip plasticity associated with activation of dislocation sources. Guided by dimensional analysis and a sensitivity study, we identify the main variables controlling the fracture process, including dislocation source and obstacle density, dislocation emission strength and the associated dwelling time-scales. DDP simulations are conducted with a range of parameters under mode-I loading. The initiation fracture toughness and the crack-growth resistance curve (R-curve) are calculated accounting for the statistics of dislocation and obstacle distributions. Comparison is performed with cases where no dislocation emission is enabled. Our findings show that dislocation emission can slow down crack growth considerably, resulting in a significant increase in slope of the R-curve. This phenomenon is due to crack-tip shielding caused by the emitted dislocations. Thus, intrinsic ductility can enhance crack-growth resistance and fracture toughness. However, we find that the extent of shielding can also be negligible for some emission planes, making the connection between intrinsic ductility and fracture toughness not straightforward.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00847-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00847-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Crack-tip dislocation emission is often considered to be the key mechanism that controls the so-called “intrinsically ductile” fracture behaviour. Yet, high fracture toughness and ductility in metals are determined by extensive plastic deformation that dissipates much more energy than solely due to the crack-tip emission process. Thus, there is a gap between intrinsically ductile behaviour and large toughness. Here, we implement the dislocation emission process within a 2D discrete dislocation plasticity (DDP) framework. The framework, which includes anisotropic elasticity and a cohesive-zone model to simulate crack propagation, enables to investigate the interplay between dislocation emission and near-crack-tip plasticity associated with activation of dislocation sources. Guided by dimensional analysis and a sensitivity study, we identify the main variables controlling the fracture process, including dislocation source and obstacle density, dislocation emission strength and the associated dwelling time-scales. DDP simulations are conducted with a range of parameters under mode-I loading. The initiation fracture toughness and the crack-growth resistance curve (R-curve) are calculated accounting for the statistics of dislocation and obstacle distributions. Comparison is performed with cases where no dislocation emission is enabled. Our findings show that dislocation emission can slow down crack growth considerably, resulting in a significant increase in slope of the R-curve. This phenomenon is due to crack-tip shielding caused by the emitted dislocations. Thus, intrinsic ductility can enhance crack-growth resistance and fracture toughness. However, we find that the extent of shielding can also be negligible for some emission planes, making the connection between intrinsic ductility and fracture toughness not straightforward.

裂纹尖端位错发射对断裂韧性的影响
裂纹尖端位错发射通常被认为是控制所谓“内在延性”断裂行为的关键机制。然而,金属的高断裂韧性和延展性是由广泛的塑性变形决定的,这种塑性变形消耗的能量要比仅仅由于裂纹尖端发射过程消耗的能量多得多。因此,在本质延性和大韧性之间存在着差距。在这里,我们在二维离散位错塑性(DDP)框架内实现位错发射过程。该框架包括各向异性弹性和模拟裂纹扩展的内聚区模型,能够研究位错发射和与位错源激活相关的近裂纹尖端塑性之间的相互作用。在量纲分析和灵敏度研究的指导下,我们确定了控制断裂过程的主要变量,包括位错源和障碍物密度、位错发射强度和相关的停留时间尺度。在i型加载条件下,采用一系列参数进行了DDP仿真。根据位错和障碍分布的统计,计算了起裂韧性和裂纹扩展阻力曲线(r曲线)。与没有启用位错发射的情况进行比较。研究结果表明,位错发射可以显著减缓裂纹的扩展,导致r曲线的斜率显著增加。这种现象是由于发射位错引起的裂纹尖端屏蔽。因此,本征延性可以提高抗裂纹扩展能力和断裂韧性。然而,我们发现对于某些发射面,屏蔽的程度也可以忽略不计,这使得内在延性和断裂韧性之间的联系并不直接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信