Hybrid Nanosystems Based on Selenium Nanoparticles, Radachlorin, and Polymer Carriers (Graft Copolymers): Synthesis, Morphology, and Spectral Characteristics
S. V. Valueva, P. Yu. Morozova, M. E. Vylegzhanina, I. V. Ivanov
{"title":"Hybrid Nanosystems Based on Selenium Nanoparticles, Radachlorin, and Polymer Carriers (Graft Copolymers): Synthesis, Morphology, and Spectral Characteristics","authors":"S. V. Valueva, P. Yu. Morozova, M. E. Vylegzhanina, I. V. Ivanov","doi":"10.1134/S2635167624602286","DOIUrl":null,"url":null,"abstract":"<p>The goal of the work is to create a new generation of highly effective antitumor drugs for photodynamic therapy (PDT), a method based on the interaction of light with a photosensitizer (PS), localized primarily in cancer-affected tissue, which leads to the formation of cytotoxic forms of oxygen and the death of cancer cells. Hybrid three-component nanosystems (HTNs) are synthesized based on selenium (Se<sup>0</sup>) nanoparticles (NPs), the photosensitizer Radachlorin (RC) and polymer carriers (PСs), i.e., graft copolymers with a polyimide or cellulose main chain and side chains of polymethacrylic acid (PMAA). Using ultraviolet (UV) spectroscopy, the formation of a HTNs is proven, presumably due to the hydrophobic interactions of selenium NPs with the methyl groups of the PСs (1st stage), followed by the incorporation of Se<sup>0</sup> NPs of the metal-porphyrin complex type inside the porphyrin ring of RС (2nd stage). For all studied HTNs, discrete spherical nanostructures with a diameter of <i>D</i><sub>AFM</sub> = 80–400 nm are revealed by AFM. The synthesized HTNs are promising as photosensitive compounds for the treatment and diagnosis of oncological diseases by the PDT method.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"959 - 965"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of the work is to create a new generation of highly effective antitumor drugs for photodynamic therapy (PDT), a method based on the interaction of light with a photosensitizer (PS), localized primarily in cancer-affected tissue, which leads to the formation of cytotoxic forms of oxygen and the death of cancer cells. Hybrid three-component nanosystems (HTNs) are synthesized based on selenium (Se0) nanoparticles (NPs), the photosensitizer Radachlorin (RC) and polymer carriers (PСs), i.e., graft copolymers with a polyimide or cellulose main chain and side chains of polymethacrylic acid (PMAA). Using ultraviolet (UV) spectroscopy, the formation of a HTNs is proven, presumably due to the hydrophobic interactions of selenium NPs with the methyl groups of the PСs (1st stage), followed by the incorporation of Se0 NPs of the metal-porphyrin complex type inside the porphyrin ring of RС (2nd stage). For all studied HTNs, discrete spherical nanostructures with a diameter of DAFM = 80–400 nm are revealed by AFM. The synthesized HTNs are promising as photosensitive compounds for the treatment and diagnosis of oncological diseases by the PDT method.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.