Hybrid Nanosystems Based on Selenium Nanoparticles, Radachlorin, and Polymer Carriers (Graft Copolymers): Synthesis, Morphology, and Spectral Characteristics

IF 0.8 Q3 Engineering
S. V. Valueva, P. Yu. Morozova, M. E. Vylegzhanina, I. V. Ivanov
{"title":"Hybrid Nanosystems Based on Selenium Nanoparticles, Radachlorin, and Polymer Carriers (Graft Copolymers): Synthesis, Morphology, and Spectral Characteristics","authors":"S. V. Valueva,&nbsp;P. Yu. Morozova,&nbsp;M. E. Vylegzhanina,&nbsp;I. V. Ivanov","doi":"10.1134/S2635167624602286","DOIUrl":null,"url":null,"abstract":"<p>The goal of the work is to create a new generation of highly effective antitumor drugs for photodynamic therapy (PDT), a method based on the interaction of light with a photosensitizer (PS), localized primarily in cancer-affected tissue, which leads to the formation of cytotoxic forms of oxygen and the death of cancer cells. Hybrid three-component nanosystems (HTNs) are synthesized based on selenium (Se<sup>0</sup>) nanoparticles (NPs), the photosensitizer Radachlorin (RC) and polymer carriers (PСs), i.e., graft copolymers with a polyimide or cellulose main chain and side chains of polymethacrylic acid (PMAA). Using ultraviolet (UV) spectroscopy, the formation of a HTNs is proven, presumably due to the hydrophobic interactions of selenium NPs with the methyl groups of the PСs (1st stage), followed by the incorporation of Se<sup>0</sup> NPs of the metal-porphyrin complex type inside the porphyrin ring of RС (2nd stage). For all studied HTNs, discrete spherical nanostructures with a diameter of <i>D</i><sub>AFM</sub> = 80–400 nm are revealed by AFM. The synthesized HTNs are promising as photosensitive compounds for the treatment and diagnosis of oncological diseases by the PDT method.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"959 - 965"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624602286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The goal of the work is to create a new generation of highly effective antitumor drugs for photodynamic therapy (PDT), a method based on the interaction of light with a photosensitizer (PS), localized primarily in cancer-affected tissue, which leads to the formation of cytotoxic forms of oxygen and the death of cancer cells. Hybrid three-component nanosystems (HTNs) are synthesized based on selenium (Se0) nanoparticles (NPs), the photosensitizer Radachlorin (RC) and polymer carriers (PСs), i.e., graft copolymers with a polyimide or cellulose main chain and side chains of polymethacrylic acid (PMAA). Using ultraviolet (UV) spectroscopy, the formation of a HTNs is proven, presumably due to the hydrophobic interactions of selenium NPs with the methyl groups of the PСs (1st stage), followed by the incorporation of Se0 NPs of the metal-porphyrin complex type inside the porphyrin ring of RС (2nd stage). For all studied HTNs, discrete spherical nanostructures with a diameter of DAFM = 80–400 nm are revealed by AFM. The synthesized HTNs are promising as photosensitive compounds for the treatment and diagnosis of oncological diseases by the PDT method.

Abstract Image

基于硒纳米粒子、辐射氯和聚合物载体(接枝共聚物)的混合纳米系统:合成、形态和光谱特性
这项工作的目标是为光动力治疗(PDT)创造新一代高效抗肿瘤药物,这是一种基于光与光敏剂(PS)相互作用的方法,主要定位于癌症受影响的组织,导致细胞毒性氧气形式的形成和癌细胞的死亡。以硒(Se0)纳米粒子(NPs)、光敏剂Radachlorin (RC)和聚合物载体(PСs),即与聚酰亚胺或纤维素主链和聚甲基丙烯酸(PMAA)侧链的接枝共聚物为基础,合成了杂化三组分纳米体系(HTNs)。利用紫外(UV)光谱,证明了HTNs的形成,可能是由于硒NPs与PСs的甲基的疏水相互作用(第一阶段),然后是金属-卟啉络合物类型的Se0 NPs并入RС的卟啉环内(第二阶段)。对于所有研究的HTNs,原子力显微镜显示出离散的球形纳米结构,DAFM的直径为80-400 nm。所合成的htn作为光敏化合物有望用于PDT法治疗和诊断肿瘤疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信