Extracellular Vesicles of Probiotics: From Structural and Functional Characteristics to Practical Application

IF 0.8 Q3 Engineering
V. M. Chernov, O. A. Chernova, M. I. Markelova, M. V. Trushin
{"title":"Extracellular Vesicles of Probiotics: From Structural and Functional Characteristics to Practical Application","authors":"V. M. Chernov,&nbsp;O. A. Chernova,&nbsp;M. I. Markelova,&nbsp;M. V. Trushin","doi":"10.1134/S2635167624600792","DOIUrl":null,"url":null,"abstract":"<p>The beneficial properties of probiotic bacteria are well known. It has recently been established that these properties are largely due to extracellular vesicles (EVs). EVs produced by bacterial cells transport a wide range of compounds (proteins, lipids, polysaccharides, metabolites, DNA, RNA, including small RNA). The specifics of the physical and chemical properties and composition of EVs determine the characteristics of their biological activity. EVs are enriched with bioactive molecules that can mediate the modulation of signaling pathways and reprogramming of target cells. The size (20–300 nm), biocompatibility, and ability to deliver drugs to different organs and tissues make EVs of probiotics a promising tool for practical application in medicine. Experimental data obtained in recent years have revealed the great potential of probiotic EVs for immunocorrection, the treatment of a number of skin diseases, digestive disorders, metabolic, and psychoneurological disorders, as well as oncological diseases. This has determined the rapid growth of interest in probiotic EVs as postbiotics, fundamentally new drugs and their delivery vehicles, new types of vaccines, and tools for cancer therapy. The realization of emerging prospects requires the comprehensive structural and functional characterization of probiotic EVs. This review presents an analysis of publications devoted to the characterization of probiotic EVs from the point of view of problems and prospects for fundamental research and the practical application of these nanostructures, the development of new scientific directions, and the development of a biosafety system.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"887 - 900"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The beneficial properties of probiotic bacteria are well known. It has recently been established that these properties are largely due to extracellular vesicles (EVs). EVs produced by bacterial cells transport a wide range of compounds (proteins, lipids, polysaccharides, metabolites, DNA, RNA, including small RNA). The specifics of the physical and chemical properties and composition of EVs determine the characteristics of their biological activity. EVs are enriched with bioactive molecules that can mediate the modulation of signaling pathways and reprogramming of target cells. The size (20–300 nm), biocompatibility, and ability to deliver drugs to different organs and tissues make EVs of probiotics a promising tool for practical application in medicine. Experimental data obtained in recent years have revealed the great potential of probiotic EVs for immunocorrection, the treatment of a number of skin diseases, digestive disorders, metabolic, and psychoneurological disorders, as well as oncological diseases. This has determined the rapid growth of interest in probiotic EVs as postbiotics, fundamentally new drugs and their delivery vehicles, new types of vaccines, and tools for cancer therapy. The realization of emerging prospects requires the comprehensive structural and functional characterization of probiotic EVs. This review presents an analysis of publications devoted to the characterization of probiotic EVs from the point of view of problems and prospects for fundamental research and the practical application of these nanostructures, the development of new scientific directions, and the development of a biosafety system.

Abstract Image

益生菌胞外囊泡:从结构、功能特征到实际应用
益生菌的有益特性是众所周知的。最近已经确定,这些特性主要是由于细胞外囊泡(EVs)。细菌细胞产生的电动汽车运输多种化合物(蛋白质、脂质、多糖、代谢物、DNA、RNA,包括小RNA)。电动汽车的理化性质和组成决定了其生物活性的特点。电动汽车富含生物活性分子,可以介导信号通路的调节和靶细胞的重编程。益生菌ev的尺寸(20 - 300nm)、生物相容性和将药物输送到不同器官和组织的能力使其成为一种有希望在医学上实际应用的工具。近年来获得的实验数据显示,益生菌ev在免疫矫正、治疗多种皮肤病、消化系统疾病、代谢疾病、精神神经疾病以及肿瘤疾病方面具有巨大潜力。这决定了人们对益生菌ev作为后生物制剂的兴趣迅速增长,从根本上说是新药及其运载工具、新型疫苗和癌症治疗工具。新兴前景的实现需要对益生菌电动汽车进行全面的结构和功能表征。本文从益生菌电动汽车的基础研究、纳米结构的实际应用、新的科学方向的发展以及生物安全系统的发展等方面分析了有关益生菌电动汽车特性的出版物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信