V. M. Chernov, O. A. Chernova, M. I. Markelova, M. V. Trushin
{"title":"Extracellular Vesicles of Probiotics: From Structural and Functional Characteristics to Practical Application","authors":"V. M. Chernov, O. A. Chernova, M. I. Markelova, M. V. Trushin","doi":"10.1134/S2635167624600792","DOIUrl":null,"url":null,"abstract":"<p>The beneficial properties of probiotic bacteria are well known. It has recently been established that these properties are largely due to extracellular vesicles (EVs). EVs produced by bacterial cells transport a wide range of compounds (proteins, lipids, polysaccharides, metabolites, DNA, RNA, including small RNA). The specifics of the physical and chemical properties and composition of EVs determine the characteristics of their biological activity. EVs are enriched with bioactive molecules that can mediate the modulation of signaling pathways and reprogramming of target cells. The size (20–300 nm), biocompatibility, and ability to deliver drugs to different organs and tissues make EVs of probiotics a promising tool for practical application in medicine. Experimental data obtained in recent years have revealed the great potential of probiotic EVs for immunocorrection, the treatment of a number of skin diseases, digestive disorders, metabolic, and psychoneurological disorders, as well as oncological diseases. This has determined the rapid growth of interest in probiotic EVs as postbiotics, fundamentally new drugs and their delivery vehicles, new types of vaccines, and tools for cancer therapy. The realization of emerging prospects requires the comprehensive structural and functional characterization of probiotic EVs. This review presents an analysis of publications devoted to the characterization of probiotic EVs from the point of view of problems and prospects for fundamental research and the practical application of these nanostructures, the development of new scientific directions, and the development of a biosafety system.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"887 - 900"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The beneficial properties of probiotic bacteria are well known. It has recently been established that these properties are largely due to extracellular vesicles (EVs). EVs produced by bacterial cells transport a wide range of compounds (proteins, lipids, polysaccharides, metabolites, DNA, RNA, including small RNA). The specifics of the physical and chemical properties and composition of EVs determine the characteristics of their biological activity. EVs are enriched with bioactive molecules that can mediate the modulation of signaling pathways and reprogramming of target cells. The size (20–300 nm), biocompatibility, and ability to deliver drugs to different organs and tissues make EVs of probiotics a promising tool for practical application in medicine. Experimental data obtained in recent years have revealed the great potential of probiotic EVs for immunocorrection, the treatment of a number of skin diseases, digestive disorders, metabolic, and psychoneurological disorders, as well as oncological diseases. This has determined the rapid growth of interest in probiotic EVs as postbiotics, fundamentally new drugs and their delivery vehicles, new types of vaccines, and tools for cancer therapy. The realization of emerging prospects requires the comprehensive structural and functional characterization of probiotic EVs. This review presents an analysis of publications devoted to the characterization of probiotic EVs from the point of view of problems and prospects for fundamental research and the practical application of these nanostructures, the development of new scientific directions, and the development of a biosafety system.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.