Preparation of Selenium-Containing Nanoscale Systems Stabilized with Alkyldimethylamine Oxide

IF 0.8 Q3 Engineering
A. A. Blinova, M. A. Pirogov, A. V. Blinov, Z. A. Rekhman, A. A. Gvozdenko, A. B. Golik, A. S. Askerova
{"title":"Preparation of Selenium-Containing Nanoscale Systems Stabilized with Alkyldimethylamine Oxide","authors":"A. A. Blinova,&nbsp;M. A. Pirogov,&nbsp;A. V. Blinov,&nbsp;Z. A. Rekhman,&nbsp;A. A. Gvozdenko,&nbsp;A. B. Golik,&nbsp;A. S. Askerova","doi":"10.1134/S2635167624600986","DOIUrl":null,"url":null,"abstract":"<p>Selenium-containing nanoscale systems stabilized with alkyldimethylamine oxide are obtained. Based on computer quantum-chemical modeling, it is established that alkyldimethylamine oxide is the optimal stabilizer. During optimization of the synthesis technique, the optimal concentrations of the components are established: <i>C</i> (selenous acid) = 0.3536 mol/L, <i>C</i> (alkyldimethylamine oxide) = 0.0339 mol/L, <i>C</i> (ascorbic acid) = 0.0992 mol/L. This sample is examined using the transmission-electron-microscopy method. The stability of the sample is established in the concentration range of NaCl, BaCl<sub>2</sub>, and FeCl<sub>3</sub> salts up to 0.5 mol/L, and Na<sub>2</sub>SO<sub>4</sub> and K<sub>3</sub>PO<sub>4</sub> salts up to 0.1 mol/L, as well as in the pH range from 8 to 12.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"987 - 992"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Selenium-containing nanoscale systems stabilized with alkyldimethylamine oxide are obtained. Based on computer quantum-chemical modeling, it is established that alkyldimethylamine oxide is the optimal stabilizer. During optimization of the synthesis technique, the optimal concentrations of the components are established: C (selenous acid) = 0.3536 mol/L, C (alkyldimethylamine oxide) = 0.0339 mol/L, C (ascorbic acid) = 0.0992 mol/L. This sample is examined using the transmission-electron-microscopy method. The stability of the sample is established in the concentration range of NaCl, BaCl2, and FeCl3 salts up to 0.5 mol/L, and Na2SO4 and K3PO4 salts up to 0.1 mol/L, as well as in the pH range from 8 to 12.

Abstract Image

烷基二甲胺氧化稳定含硒纳米体系的制备
用氧化烷基二甲胺稳定了含硒纳米体系。基于计算机量子化学模型,确定了烷基二甲胺氧化物是最佳稳定剂。通过对合成工艺的优化,确定了各组分的最佳浓度:C(亚硒酸)= 0.3536 mol/L, C(烷基二甲胺氧化物)= 0.0339 mol/L, C(抗坏血酸)= 0.0992 mol/L。该样品是用透射电子显微镜法检查的。在NaCl、BaCl2和FeCl3盐浓度为0.5 mol/L, Na2SO4和K3PO4盐浓度为0.1 mol/L, pH为8 ~ 12的范围内,样品均具有良好的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信