A. A. Blinova, M. A. Pirogov, A. V. Blinov, Z. A. Rekhman, A. A. Gvozdenko, A. B. Golik, A. S. Askerova
{"title":"Preparation of Selenium-Containing Nanoscale Systems Stabilized with Alkyldimethylamine Oxide","authors":"A. A. Blinova, M. A. Pirogov, A. V. Blinov, Z. A. Rekhman, A. A. Gvozdenko, A. B. Golik, A. S. Askerova","doi":"10.1134/S2635167624600986","DOIUrl":null,"url":null,"abstract":"<p>Selenium-containing nanoscale systems stabilized with alkyldimethylamine oxide are obtained. Based on computer quantum-chemical modeling, it is established that alkyldimethylamine oxide is the optimal stabilizer. During optimization of the synthesis technique, the optimal concentrations of the components are established: <i>C</i> (selenous acid) = 0.3536 mol/L, <i>C</i> (alkyldimethylamine oxide) = 0.0339 mol/L, <i>C</i> (ascorbic acid) = 0.0992 mol/L. This sample is examined using the transmission-electron-microscopy method. The stability of the sample is established in the concentration range of NaCl, BaCl<sub>2</sub>, and FeCl<sub>3</sub> salts up to 0.5 mol/L, and Na<sub>2</sub>SO<sub>4</sub> and K<sub>3</sub>PO<sub>4</sub> salts up to 0.1 mol/L, as well as in the pH range from 8 to 12.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"987 - 992"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium-containing nanoscale systems stabilized with alkyldimethylamine oxide are obtained. Based on computer quantum-chemical modeling, it is established that alkyldimethylamine oxide is the optimal stabilizer. During optimization of the synthesis technique, the optimal concentrations of the components are established: C (selenous acid) = 0.3536 mol/L, C (alkyldimethylamine oxide) = 0.0339 mol/L, C (ascorbic acid) = 0.0992 mol/L. This sample is examined using the transmission-electron-microscopy method. The stability of the sample is established in the concentration range of NaCl, BaCl2, and FeCl3 salts up to 0.5 mol/L, and Na2SO4 and K3PO4 salts up to 0.1 mol/L, as well as in the pH range from 8 to 12.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.