{"title":"Tuning the geometry of porous alumina layers via anodization in mixtures of different acids","authors":"Aleksandra Świerkula, Leszek Zaraska","doi":"10.1007/s10008-024-06114-y","DOIUrl":null,"url":null,"abstract":"<div><p>Porous anodic aluminum oxide (AAO) layers have been obtained by two-step anodization of high-purity Al in two types of acid mixtures, i.e., in H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>–H<sub>3</sub>PO<sub>4</sub> and, for the first time, in H<sub>2</sub>SO<sub>4</sub>–H<sub>3</sub>PO<sub>4</sub> systems. The kinetics of oxide formation was examined by monitoring the current vs. time curves while the morphology of the resulting layers was carefully verified by scanning electron microscopy (SEM). A special emphasis was put on establishing correlations between electrolyte composition, the kinetics and effectiveness of oxide growth, and the morphological features of AAO layers (pore and cell diameter, porosity), as well as pore arrangement. It was confirmed that the addition of H<sub>3</sub>PO<sub>4</sub> to both H<sub>2</sub>C<sub>2</sub>O<sub>4</sub> and H<sub>2</sub>SO<sub>4</sub> electrolytes results in a significant decrease in oxide growth rate, and worsening of pore arrangement, while the values of pore diameter and interpore distance are much less affected. Moreover, the presence of a small amount of phosphoric acid in the reaction mixture allowed for a noticeable increase in pore ordering if anodization was carried out beyond the self-ordering regime, or performing controlled anodization even at voltages at which the burning phenomenon is typically observed. It is strongly believed that manipulating the electrolyte composition by adding another acid may provide another degree of freedom to control the morphology of the resulting nanostructured alumina layers.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"29 4","pages":"1449 - 1458"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-024-06114-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06114-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Porous anodic aluminum oxide (AAO) layers have been obtained by two-step anodization of high-purity Al in two types of acid mixtures, i.e., in H2C2O4–H3PO4 and, for the first time, in H2SO4–H3PO4 systems. The kinetics of oxide formation was examined by monitoring the current vs. time curves while the morphology of the resulting layers was carefully verified by scanning electron microscopy (SEM). A special emphasis was put on establishing correlations between electrolyte composition, the kinetics and effectiveness of oxide growth, and the morphological features of AAO layers (pore and cell diameter, porosity), as well as pore arrangement. It was confirmed that the addition of H3PO4 to both H2C2O4 and H2SO4 electrolytes results in a significant decrease in oxide growth rate, and worsening of pore arrangement, while the values of pore diameter and interpore distance are much less affected. Moreover, the presence of a small amount of phosphoric acid in the reaction mixture allowed for a noticeable increase in pore ordering if anodization was carried out beyond the self-ordering regime, or performing controlled anodization even at voltages at which the burning phenomenon is typically observed. It is strongly believed that manipulating the electrolyte composition by adding another acid may provide another degree of freedom to control the morphology of the resulting nanostructured alumina layers.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.