Recording a Cortical Signal from a Laboratory Mouse Brain Using Electrodes Based on an Electrically Conductive Hydrogel

IF 0.8 Q3 Engineering
A. O. Romanov, A. S. Migalev, D. A. Kirillova, R. N. Magaramov, A. V. Rybakova, A. P. Trashkov, P. M. Gotovtsev
{"title":"Recording a Cortical Signal from a Laboratory Mouse Brain Using Electrodes Based on an Electrically Conductive Hydrogel","authors":"A. O. Romanov,&nbsp;A. S. Migalev,&nbsp;D. A. Kirillova,&nbsp;R. N. Magaramov,&nbsp;A. V. Rybakova,&nbsp;A. P. Trashkov,&nbsp;P. M. Gotovtsev","doi":"10.1134/S2635167624600743","DOIUrl":null,"url":null,"abstract":"<p>Recording the activity of brain neurons opens up many possibilities for both diagnosing diseases and expanding human capabilities. Classic metal electrodes are inevitably rejected by nervous tissue due to their physical properties, and hence have a number of significant limitations in use. Hydrogels may be more suitable materials for this role, since they make it relatively easy to achieve the required properties by simply combining different polymers. This work presents an electrically conductive hydrogel based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS), carrageenan (CRG), and polyvinyl alcohol (PVA), which has already proven itself as a stable and biocompatible material. This series of experiments on C57Bl/6 mice demonstrates its feasibility as an electrocorticography electrode.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"1068 - 1074"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Recording the activity of brain neurons opens up many possibilities for both diagnosing diseases and expanding human capabilities. Classic metal electrodes are inevitably rejected by nervous tissue due to their physical properties, and hence have a number of significant limitations in use. Hydrogels may be more suitable materials for this role, since they make it relatively easy to achieve the required properties by simply combining different polymers. This work presents an electrically conductive hydrogel based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS), carrageenan (CRG), and polyvinyl alcohol (PVA), which has already proven itself as a stable and biocompatible material. This series of experiments on C57Bl/6 mice demonstrates its feasibility as an electrocorticography electrode.

Abstract Image

使用基于导电水凝胶的电极记录实验室小鼠大脑皮层信号
记录大脑神经元的活动为诊断疾病和拓展人类能力开辟了许多可能性。经典的金属电极由于其物理性质不可避免地会被神经组织排斥,因此在使用上有许多明显的限制。水凝胶可能是更适合这个角色的材料,因为它们可以通过简单地结合不同的聚合物来相对容易地获得所需的性能。这项工作提出了一种基于聚(3,4-乙烯二氧噻吩)、聚(苯乙烯磺酸盐)(PEDOT:PSS)、卡拉胶(CRG)和聚乙烯醇(PVA)的导电水凝胶,它已经被证明是一种稳定的生物相容性材料。在C57Bl/6小鼠上的一系列实验证明了其作为皮质电图电极的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnologies in Russia
Nanotechnologies in Russia NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
1.20
自引率
0.00%
发文量
0
期刊介绍: Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信