A. O. Romanov, A. S. Migalev, D. A. Kirillova, R. N. Magaramov, A. V. Rybakova, A. P. Trashkov, P. M. Gotovtsev
{"title":"Recording a Cortical Signal from a Laboratory Mouse Brain Using Electrodes Based on an Electrically Conductive Hydrogel","authors":"A. O. Romanov, A. S. Migalev, D. A. Kirillova, R. N. Magaramov, A. V. Rybakova, A. P. Trashkov, P. M. Gotovtsev","doi":"10.1134/S2635167624600743","DOIUrl":null,"url":null,"abstract":"<p>Recording the activity of brain neurons opens up many possibilities for both diagnosing diseases and expanding human capabilities. Classic metal electrodes are inevitably rejected by nervous tissue due to their physical properties, and hence have a number of significant limitations in use. Hydrogels may be more suitable materials for this role, since they make it relatively easy to achieve the required properties by simply combining different polymers. This work presents an electrically conductive hydrogel based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS), carrageenan (CRG), and polyvinyl alcohol (PVA), which has already proven itself as a stable and biocompatible material. This series of experiments on C57Bl/6 mice demonstrates its feasibility as an electrocorticography electrode.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"1068 - 1074"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624600743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Recording the activity of brain neurons opens up many possibilities for both diagnosing diseases and expanding human capabilities. Classic metal electrodes are inevitably rejected by nervous tissue due to their physical properties, and hence have a number of significant limitations in use. Hydrogels may be more suitable materials for this role, since they make it relatively easy to achieve the required properties by simply combining different polymers. This work presents an electrically conductive hydrogel based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS), carrageenan (CRG), and polyvinyl alcohol (PVA), which has already proven itself as a stable and biocompatible material. This series of experiments on C57Bl/6 mice demonstrates its feasibility as an electrocorticography electrode.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.