V. A. Ryzhov, V. V. Deriglazov, N. H. Tran, A. V. Volnitskiy, T. A. Shtam, A. V. Arutyunyan, A. S. Spitsyna, O. P. Smirnov, Yu. P. Chernenkov, V. G. Zinoviev, D. A. Rumyantseva, A. L. Konevega, Ya. Yu. Marchenko
{"title":"Study of Dextran Coated Magnetic Nanoparticles Incorporation into Glioblastoma Cells","authors":"V. A. Ryzhov, V. V. Deriglazov, N. H. Tran, A. V. Volnitskiy, T. A. Shtam, A. V. Arutyunyan, A. S. Spitsyna, O. P. Smirnov, Yu. P. Chernenkov, V. G. Zinoviev, D. A. Rumyantseva, A. L. Konevega, Ya. Yu. Marchenko","doi":"10.1134/S2635167624601736","DOIUrl":null,"url":null,"abstract":"<p>For therapeutic applications it is important to know quantitative uptake of nanoparticles by the cells. In this work incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) coated by the dextran shell into malignant glioma cells, as well as into human fibroblast cells in vitro was studied. Nanoparticles were synthesized by co-precipitation and the presence of chemical impurities in them was assessed by X-ray fluorescence measurements. Geometrical parameters of nanoparticles were characterized by X-ray diffraction and dynamic light scattering. Magnetic and dynamic parameters of SPIONs in the medium before co-incubation with cells as well as in cells after incubation were found using highly sensitive method of nonlinear response to a weak <i>ac</i> magnetic field parallel to the steady field with registration of the second harmonic of magnetization <i>M</i><sub>2</sub> followed by processing the obtained data with the formalism based on the Gilbert-Landau-Lifshitz equation for stochastic dynamics of superparamagnetic particles. The formation of SPION aggregates in the incubation medium was established, accompanied by a decrease in magnetostatic and, accordingly, free energy of the SPIONs system. The uptake of SPIONs by the cells at co-incubation was studied depending on the concentration of nanoparticles, duration of the co-incubation and the seeding density. The data obtained indicate: (i) close values of the magnetic and dynamic parameters of nanoparticle aggregates absorbed by the cells and in the medium before incubation; (ii) the decrease in the amount of SPIONs absorbed by cells at a higher seeding density; (iii) dependence of the SPIONs uptake on their concentration (characterized by the iron content) in the medium and on the time of co-incubation as well as on the cell type, with minimal uptake by cells of normal morphology.</p>","PeriodicalId":716,"journal":{"name":"Nanotechnologies in Russia","volume":"19 6","pages":"1051 - 1060"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnologies in Russia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2635167624601736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
For therapeutic applications it is important to know quantitative uptake of nanoparticles by the cells. In this work incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) coated by the dextran shell into malignant glioma cells, as well as into human fibroblast cells in vitro was studied. Nanoparticles were synthesized by co-precipitation and the presence of chemical impurities in them was assessed by X-ray fluorescence measurements. Geometrical parameters of nanoparticles were characterized by X-ray diffraction and dynamic light scattering. Magnetic and dynamic parameters of SPIONs in the medium before co-incubation with cells as well as in cells after incubation were found using highly sensitive method of nonlinear response to a weak ac magnetic field parallel to the steady field with registration of the second harmonic of magnetization M2 followed by processing the obtained data with the formalism based on the Gilbert-Landau-Lifshitz equation for stochastic dynamics of superparamagnetic particles. The formation of SPION aggregates in the incubation medium was established, accompanied by a decrease in magnetostatic and, accordingly, free energy of the SPIONs system. The uptake of SPIONs by the cells at co-incubation was studied depending on the concentration of nanoparticles, duration of the co-incubation and the seeding density. The data obtained indicate: (i) close values of the magnetic and dynamic parameters of nanoparticle aggregates absorbed by the cells and in the medium before incubation; (ii) the decrease in the amount of SPIONs absorbed by cells at a higher seeding density; (iii) dependence of the SPIONs uptake on their concentration (characterized by the iron content) in the medium and on the time of co-incubation as well as on the cell type, with minimal uptake by cells of normal morphology.
期刊介绍:
Nanobiotechnology Reports publishes interdisciplinary research articles on fundamental aspects of the structure and properties of nanoscale objects and nanomaterials, polymeric and bioorganic molecules, and supramolecular and biohybrid complexes, as well as articles that discuss technologies for their preparation and processing, and practical implementation of products, devices, and nature-like systems based on them. The journal publishes original articles and reviews that meet the highest scientific quality standards in the following areas of science and technology studies: self-organizing structures and nanoassemblies; nanostructures, including nanotubes; functional and structural nanomaterials; polymeric, bioorganic, and hybrid nanomaterials; devices and products based on nanomaterials and nanotechnology; nanobiology and genetics, and omics technologies; nanobiomedicine and nanopharmaceutics; nanoelectronics and neuromorphic computing systems; neurocognitive systems and technologies; nanophotonics; natural science methods in a study of cultural heritage items; metrology, standardization, and monitoring in nanotechnology.