Cu–Cu2O Nanorod-CdS heterostructures on carbon cloth for efficient photoelectrocatalytic water splitting

IF 8.3 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Maral Fouladvand, Mohsen Bayat, Ahmad Rouhollahi
{"title":"Cu–Cu2O Nanorod-CdS heterostructures on carbon cloth for efficient photoelectrocatalytic water splitting","authors":"Maral Fouladvand,&nbsp;Mohsen Bayat,&nbsp;Ahmad Rouhollahi","doi":"10.1016/j.ijhydene.2025.03.199","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectrochemical (PEC) water splitting represents a critical pathway toward sustainable hydrogen production, addressing global energy challenges. This study presents an innovative strategy to fabricate a highly efficient photoanode by integrating n-type CdS with p-type Cu–Cu<sub>2</sub>O nanorods on a flexible carbon cloth substrate using electrodeposition techniques. This CdS/Cu–Cu<sub>2</sub>O nanocomposite establishes a p-n heterojunction at the carbon cloth interface, significantly enhancing overall PEC performance. Under LED illumination (∼80 mW/cm<sup>2</sup>), the optimized photoanode achieved an impressive photocurrent density of 8.7 mA/cm<sup>2</sup> at 1.23 V versus the reversible hydrogen electrode (RHE), representing a 2.7-fold improvement over the unmodified CdS photoanode. The observed enhancement in photoelectrochemical (PEC) performance can be attributed to the deliberate and meticulous design of the CdS/Cu–Cu<sub>2</sub>O interface, which facilitates superior charge carrier dynamics. This improvement arises from the synergistic combination of surface engineering and structural optimization, both of which significantly influence the efficiency of charge separation and transfer. Importantly, precise control over surface morphology and defect density is pivotal in optimizing the photoelectrode’s functional properties, ensuring superior stability and performance. Furthermore, the CdS/Cu–Cu<sub>2</sub>O photoanode demonstrated exceptional photostability, maintaining a steady photocurrent density of 8.7 mA/cm<sup>2</sup> over 10 h of continuous operation. This work underscores the pivotal role of tailored surface and interfacial engineering of carbon cloth substrates in enhancing both the efficiency and the long-term durability of photoelectrochemical (PEC) systems.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"118 ","pages":"Pages 14-23"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036031992501314X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) water splitting represents a critical pathway toward sustainable hydrogen production, addressing global energy challenges. This study presents an innovative strategy to fabricate a highly efficient photoanode by integrating n-type CdS with p-type Cu–Cu2O nanorods on a flexible carbon cloth substrate using electrodeposition techniques. This CdS/Cu–Cu2O nanocomposite establishes a p-n heterojunction at the carbon cloth interface, significantly enhancing overall PEC performance. Under LED illumination (∼80 mW/cm2), the optimized photoanode achieved an impressive photocurrent density of 8.7 mA/cm2 at 1.23 V versus the reversible hydrogen electrode (RHE), representing a 2.7-fold improvement over the unmodified CdS photoanode. The observed enhancement in photoelectrochemical (PEC) performance can be attributed to the deliberate and meticulous design of the CdS/Cu–Cu2O interface, which facilitates superior charge carrier dynamics. This improvement arises from the synergistic combination of surface engineering and structural optimization, both of which significantly influence the efficiency of charge separation and transfer. Importantly, precise control over surface morphology and defect density is pivotal in optimizing the photoelectrode’s functional properties, ensuring superior stability and performance. Furthermore, the CdS/Cu–Cu2O photoanode demonstrated exceptional photostability, maintaining a steady photocurrent density of 8.7 mA/cm2 over 10 h of continuous operation. This work underscores the pivotal role of tailored surface and interfacial engineering of carbon cloth substrates in enhancing both the efficiency and the long-term durability of photoelectrochemical (PEC) systems.

Abstract Image

碳布上Cu-Cu2O纳米棒- cds异质结构用于高效光电催化水分解
光电化学(PEC)水分解是实现可持续制氢、解决全球能源挑战的关键途径。本研究提出了一种创新的策略,通过电沉积技术在柔性碳布衬底上集成n型CdS和p型Cu-Cu2O纳米棒来制造高效的光阳极。该CdS/ Cu-Cu2O纳米复合材料在碳布界面建立了p-n异质结,显著提高了整体PEC性能。在LED照明(~ 80 mW/cm2)下,与可逆氢电极(RHE)相比,优化的光阳极在1.23 V下实现了令人印象深刻的8.7 mA/cm2的光电流密度,比未修饰的CdS光阳极提高了2.7倍。所观察到的光电化学(PEC)性能的增强可归因于CdS/ Cu-Cu2O界面的精心设计,这有利于优越的载流子动力学。这种改进源于表面工程和结构优化的协同结合,两者都显著影响电荷分离和转移的效率。重要的是,对表面形貌和缺陷密度的精确控制对于优化光电极的功能特性至关重要,从而确保优越的稳定性和性能。此外,CdS/ Cu-Cu2O光阳极表现出优异的光稳定性,在连续工作10小时内保持8.7 mA/cm2的稳定光电流密度。这项工作强调了碳布基材的定制表面和界面工程在提高光电化学(PEC)系统的效率和长期耐久性方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信