Graphene-based wearable biosensors for point-of-care diagnostics: From surface functionalization to biomarker detection

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jiawen Song , Yang Luo , Zhuang Hao , Menglong Qu , Cong Huang , Ziran Wang , Jun Yang , Qingrou Liang , Yuan Jia , Qiuming Song , Qiuting Zhang , Sida Luo
{"title":"Graphene-based wearable biosensors for point-of-care diagnostics: From surface functionalization to biomarker detection","authors":"Jiawen Song ,&nbsp;Yang Luo ,&nbsp;Zhuang Hao ,&nbsp;Menglong Qu ,&nbsp;Cong Huang ,&nbsp;Ziran Wang ,&nbsp;Jun Yang ,&nbsp;Qingrou Liang ,&nbsp;Yuan Jia ,&nbsp;Qiuming Song ,&nbsp;Qiuting Zhang ,&nbsp;Sida Luo","doi":"10.1016/j.mtbio.2025.101667","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for non-invasive, real-time health monitoring has driven the development of graphene-based wearable biosensors for point-of-care (POC) diagnostics. This review explores the surface functionalization of graphene and its critical role in enhancing the performance of wearable biosensors for biomarker detection. Leveraging graphene's exceptional electrical, mechanical, and biocompatible properties, we discuss how surface functionalization—such as covalent and non-covalent functionalization, biomolecular probes, and passivation layers—enable highly sensitive and selective detection of biomarkers in biofluids. We categorize biomarkers based on their physical properties and explore various wearable designs, including patches, contact lenses, microneedles, and textiles, highlighting their integration into POC devices. Furthermore, we examine the challenges and opportunities in translating graphene-based sensors from the lab to real-world applications, emphasizing the importance of biocompatibility and surface functionalization for improved performance. By bridging the gap between material science and biomedical engineering, this review provides a roadmap for the development of next-generation graphene biosensors that could revolutionize personalized medicine and point-of-care diagnostics.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"32 ","pages":"Article 101667"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000642500225X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for non-invasive, real-time health monitoring has driven the development of graphene-based wearable biosensors for point-of-care (POC) diagnostics. This review explores the surface functionalization of graphene and its critical role in enhancing the performance of wearable biosensors for biomarker detection. Leveraging graphene's exceptional electrical, mechanical, and biocompatible properties, we discuss how surface functionalization—such as covalent and non-covalent functionalization, biomolecular probes, and passivation layers—enable highly sensitive and selective detection of biomarkers in biofluids. We categorize biomarkers based on their physical properties and explore various wearable designs, including patches, contact lenses, microneedles, and textiles, highlighting their integration into POC devices. Furthermore, we examine the challenges and opportunities in translating graphene-based sensors from the lab to real-world applications, emphasizing the importance of biocompatibility and surface functionalization for improved performance. By bridging the gap between material science and biomedical engineering, this review provides a roadmap for the development of next-generation graphene biosensors that could revolutionize personalized medicine and point-of-care diagnostics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信