Experimental study on the optimization of thermal environment and airflow organization in a ventilated underground refuge chamber using deflectors

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
Hang Jin , Zujing Zhang , Ruiyong Mao , Jiri Zhou , Hongwei Wu , Xing Liang
{"title":"Experimental study on the optimization of thermal environment and airflow organization in a ventilated underground refuge chamber using deflectors","authors":"Hang Jin ,&nbsp;Zujing Zhang ,&nbsp;Ruiyong Mao ,&nbsp;Jiri Zhou ,&nbsp;Hongwei Wu ,&nbsp;Xing Liang","doi":"10.1016/j.csite.2025.106023","DOIUrl":null,"url":null,"abstract":"<div><div>Acceptable temperature is crucial for underground refuge chamber (URC) to ensure the safety and comfort of occupants. A novel temperature control scheme combining mechanical ventilation with deflectors was proposed for URCs. In this study, the effects of ventilation rate (VR), deflector height and deflector angle on ambient temperature control performance and airflow organization of URC were investigated through orthogonal experiments. Results show that: (Ⅰ) The ambient temperature gradient of URC decreases with the increase of VR and deflector height. (Ⅱ) With VR of 350 m<sup>3</sup>/h, deflector height of 1.40 m, and deflector angle of 0°, compared to the situation without deflectors, the temperature unevenness coefficient can be effectively reduced, the head-to-foot temperature difference can meet the design standard requirements, the waste heat emissions efficiency is increased by 46.1 %, and an average decrease in ambient temperature of 2 °C (Ⅲ) The influence of various factors on the ambient temperature control performance in the URC is as follows: deflector height &gt; VR &gt; deflector angle.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 106023"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25002837","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Acceptable temperature is crucial for underground refuge chamber (URC) to ensure the safety and comfort of occupants. A novel temperature control scheme combining mechanical ventilation with deflectors was proposed for URCs. In this study, the effects of ventilation rate (VR), deflector height and deflector angle on ambient temperature control performance and airflow organization of URC were investigated through orthogonal experiments. Results show that: (Ⅰ) The ambient temperature gradient of URC decreases with the increase of VR and deflector height. (Ⅱ) With VR of 350 m3/h, deflector height of 1.40 m, and deflector angle of 0°, compared to the situation without deflectors, the temperature unevenness coefficient can be effectively reduced, the head-to-foot temperature difference can meet the design standard requirements, the waste heat emissions efficiency is increased by 46.1 %, and an average decrease in ambient temperature of 2 °C (Ⅲ) The influence of various factors on the ambient temperature control performance in the URC is as follows: deflector height > VR > deflector angle.
可接受的温度对地下避难室(URC)至关重要,以确保居住者的安全和舒适。有人提出了一种结合机械通风和导流板的新型温度控制方案。本研究通过正交实验研究了通风率(VR)、导流板高度和导流板角度对 URC 环境温度控制性能和气流组织的影响。结果表明(Ⅰ)URC 的环境温度梯度随 VR 和导流板高度的增加而减小。(Ⅱ)当 VR 为 350 m3/h、导流板高度为 1.40 m、导流板角度为 0° 时,与无导流板的情况相比,温度不均匀系数可有效降低,头脚温差可满足设计标准要求,余热排放效率提高了 46.各种因素对 URC 环境温度控制性能的影响如下:导流板高度 >;VR >;导流板角度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信