Hang Jin , Zujing Zhang , Ruiyong Mao , Jiri Zhou , Hongwei Wu , Xing Liang
{"title":"Experimental study on the optimization of thermal environment and airflow organization in a ventilated underground refuge chamber using deflectors","authors":"Hang Jin , Zujing Zhang , Ruiyong Mao , Jiri Zhou , Hongwei Wu , Xing Liang","doi":"10.1016/j.csite.2025.106023","DOIUrl":null,"url":null,"abstract":"<div><div>Acceptable temperature is crucial for underground refuge chamber (URC) to ensure the safety and comfort of occupants. A novel temperature control scheme combining mechanical ventilation with deflectors was proposed for URCs. In this study, the effects of ventilation rate (VR), deflector height and deflector angle on ambient temperature control performance and airflow organization of URC were investigated through orthogonal experiments. Results show that: (Ⅰ) The ambient temperature gradient of URC decreases with the increase of VR and deflector height. (Ⅱ) With VR of 350 m<sup>3</sup>/h, deflector height of 1.40 m, and deflector angle of 0°, compared to the situation without deflectors, the temperature unevenness coefficient can be effectively reduced, the head-to-foot temperature difference can meet the design standard requirements, the waste heat emissions efficiency is increased by 46.1 %, and an average decrease in ambient temperature of 2 °C (Ⅲ) The influence of various factors on the ambient temperature control performance in the URC is as follows: deflector height > VR > deflector angle.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":"69 ","pages":"Article 106023"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X25002837","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Acceptable temperature is crucial for underground refuge chamber (URC) to ensure the safety and comfort of occupants. A novel temperature control scheme combining mechanical ventilation with deflectors was proposed for URCs. In this study, the effects of ventilation rate (VR), deflector height and deflector angle on ambient temperature control performance and airflow organization of URC were investigated through orthogonal experiments. Results show that: (Ⅰ) The ambient temperature gradient of URC decreases with the increase of VR and deflector height. (Ⅱ) With VR of 350 m3/h, deflector height of 1.40 m, and deflector angle of 0°, compared to the situation without deflectors, the temperature unevenness coefficient can be effectively reduced, the head-to-foot temperature difference can meet the design standard requirements, the waste heat emissions efficiency is increased by 46.1 %, and an average decrease in ambient temperature of 2 °C (Ⅲ) The influence of various factors on the ambient temperature control performance in the URC is as follows: deflector height > VR > deflector angle.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.