An enhanced exergoenvironmental assessment of an integrated hydrogen generating system

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Hilal Sayhan Akci Turgut, Ibrahim Dincer
{"title":"An enhanced exergoenvironmental assessment of an integrated hydrogen generating system","authors":"Hilal Sayhan Akci Turgut,&nbsp;Ibrahim Dincer","doi":"10.1016/j.energy.2025.135492","DOIUrl":null,"url":null,"abstract":"<div><div>This study concerns a novel integrated three-compartment electrochemical reactor, developed in a lab environment. The reactor uses an electrolytic cation exchange method to capture considerable quantities of carbon dioxide from ocean water, in the forms of bicarbonate and carbonate, while concurrently producing hydrogen gas and capturing carbon dioxide for potential hydrocarbon synthesis. This study focuses on the performance and environmental impact of a novel E-CEM (Electrochemical-Continuous Electrodeionization Membrane) system under varying operational conditions such as such as energy and exergy efficiencies, exergy destruction rates, the exergoenvironmental impact factor, exergetic destruction ratio, exergetic sustainability index, entropy generation ratio, entropic environmental impact factor, sustainability index, and relative irreversibility under different temperatures between 10 °C and 90 °C and pressures between 100 kPa and 1000 kPa. Thermodynamic assessments using the Engineering Equation Solver offer quantitative evaluations of system performance, while exergoenvironmental analysis provides an advanced approach that combines exergy analysis with environmental impact assessment to evaluate both the performance and environmental sustainability of energy systems. An exergy destruction ratio value of the reactor is found to be 0.9 at 100 kPa and rises to 1.3 at 1000 kPa, showing increased exergy destruction, particularly at higher pressures. The E-CEM reactor achieves energy and exergy efficiencies of 7 % and 9 %, respectively.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"322 ","pages":"Article 135492"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036054422501134X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study concerns a novel integrated three-compartment electrochemical reactor, developed in a lab environment. The reactor uses an electrolytic cation exchange method to capture considerable quantities of carbon dioxide from ocean water, in the forms of bicarbonate and carbonate, while concurrently producing hydrogen gas and capturing carbon dioxide for potential hydrocarbon synthesis. This study focuses on the performance and environmental impact of a novel E-CEM (Electrochemical-Continuous Electrodeionization Membrane) system under varying operational conditions such as such as energy and exergy efficiencies, exergy destruction rates, the exergoenvironmental impact factor, exergetic destruction ratio, exergetic sustainability index, entropy generation ratio, entropic environmental impact factor, sustainability index, and relative irreversibility under different temperatures between 10 °C and 90 °C and pressures between 100 kPa and 1000 kPa. Thermodynamic assessments using the Engineering Equation Solver offer quantitative evaluations of system performance, while exergoenvironmental analysis provides an advanced approach that combines exergy analysis with environmental impact assessment to evaluate both the performance and environmental sustainability of energy systems. An exergy destruction ratio value of the reactor is found to be 0.9 at 100 kPa and rises to 1.3 at 1000 kPa, showing increased exergy destruction, particularly at higher pressures. The E-CEM reactor achieves energy and exergy efficiencies of 7 % and 9 %, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信