Feature compensation and network reconstruction imaging with high-order helical modes in cylindrical waveguides

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Zhao Wang , Xiao Ying , Junkai Tong , Wen Luo , Fuzai Lv , Zhifeng Tang , Yang Liu
{"title":"Feature compensation and network reconstruction imaging with high-order helical modes in cylindrical waveguides","authors":"Zhao Wang ,&nbsp;Xiao Ying ,&nbsp;Junkai Tong ,&nbsp;Wen Luo ,&nbsp;Fuzai Lv ,&nbsp;Zhifeng Tang ,&nbsp;Yang Liu","doi":"10.1016/j.ultras.2025.107631","DOIUrl":null,"url":null,"abstract":"<div><div>Pipe wall loss assessment is crucial in oil and gas transportation. Ultrasonic guided wave is an effective technology to detect pipe defects. However, accurately inverting weak-feature defects under limited view conditions remains challenging due to constraints in transducer arrangements and inconsistent signal characteristics. This paper proposes a stepwise inversion method based on feature compensation and network reconstruction through deep learning, combined with high-order helical guided waves to expand the imaging view and achieve high-resolution imaging of pipe defects. A forward model was established using the finite difference method, with the two-dimensional Pearson correlation coefficient and maximum wall loss estimation accuracy defined as imaging metrics to evaluate and compare the method. Among 50 randomly selected defect samples in the test set, the inversion model achieved a correlation coefficient of 0.9669 and a maximum wall loss estimation accuracy of 96.65 %. Additionally, Gaussian noise was introduced to assess imaging robustness under pure signal, 5 dB, and 3 dB conditions. Laboratory experiments validated the practical feasibility of the proposed method. This approach is generalizable and holds significant potential for nondestructive testing in cylindrical waveguide structures represented by pipes.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"151 ","pages":"Article 107631"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2500068X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pipe wall loss assessment is crucial in oil and gas transportation. Ultrasonic guided wave is an effective technology to detect pipe defects. However, accurately inverting weak-feature defects under limited view conditions remains challenging due to constraints in transducer arrangements and inconsistent signal characteristics. This paper proposes a stepwise inversion method based on feature compensation and network reconstruction through deep learning, combined with high-order helical guided waves to expand the imaging view and achieve high-resolution imaging of pipe defects. A forward model was established using the finite difference method, with the two-dimensional Pearson correlation coefficient and maximum wall loss estimation accuracy defined as imaging metrics to evaluate and compare the method. Among 50 randomly selected defect samples in the test set, the inversion model achieved a correlation coefficient of 0.9669 and a maximum wall loss estimation accuracy of 96.65 %. Additionally, Gaussian noise was introduced to assess imaging robustness under pure signal, 5 dB, and 3 dB conditions. Laboratory experiments validated the practical feasibility of the proposed method. This approach is generalizable and holds significant potential for nondestructive testing in cylindrical waveguide structures represented by pipes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信