Spatial and signal features of white matter integrity and associations with clinical factors: A CARDIA brain MRI study

IF 3.4 2区 医学 Q2 NEUROIMAGING
Faezeh Vedaei , Dhivya Srinivasan , Drew Parker , Guray Erus , Sudipto Dolui , Farzaneh A. Sorond , David R. Jacobs Jr , Lenore J. Launer , Daniel T. Lackland , Christos Davatzikos , R.Nick Bryan , Ilya M. Nasrallah
{"title":"Spatial and signal features of white matter integrity and associations with clinical factors: A CARDIA brain MRI study","authors":"Faezeh Vedaei ,&nbsp;Dhivya Srinivasan ,&nbsp;Drew Parker ,&nbsp;Guray Erus ,&nbsp;Sudipto Dolui ,&nbsp;Farzaneh A. Sorond ,&nbsp;David R. Jacobs Jr ,&nbsp;Lenore J. Launer ,&nbsp;Daniel T. Lackland ,&nbsp;Christos Davatzikos ,&nbsp;R.Nick Bryan ,&nbsp;Ilya M. Nasrallah","doi":"10.1016/j.nicl.2025.103768","DOIUrl":null,"url":null,"abstract":"<div><div>White matter hyperintensities (WMH) may be indicative of age-related cerebrovascular diseases and contribute to cognitive and functional decline. Normal appearing WM (NAWM) adjacent to WMH, termed “penumbra,” is known to be vulnerable to future WMH pathology. WM integrity can be evaluated using multiple magnetic resonance imaging (MRI) modalities. We aimed to identify MRI features predictive of WMH growth and to compare the implications of these features based on spatial proximity to existing WMH versus signal features in baseline NAWM. We used baseline and 5-year follow-up MRI scans in 485 middle-aged participants form the Coronary Artery Risk Development in Young Adults (CARDIA). Multimodal MRI at baseline, including fluid attenuated inversion recovery (FLAIR), diffusion tensor imaging (DTI), and cerebral blood flow (CBF), was measured within WM ROIs including baseline WMH and regions that later developed into new WMH, within and external to the baseline penumbra. Overall, we found that 80% of new WMH appeared within the baseline penumbra. We also found lower fractional anisotropy (FA) and CBF and higher FLAIR and median diffusivity (MD) in NAWM at baseline in regions with subsequent WMH growth compared to those without WMH growth. For NAWM regions defined by signal features, subthreshold FA and suprathreshold MD and FLAIR abnormality at baseline were the most robust predictors of WMH growth. Baseline systolic blood pressure had significant associations with baseline abnormalities in NAWM and subsequently with cognitive decline, particularly for FA and MD measures. The findings support the use of DTI as the predictor of WMH growth, which is correlated with subtle, adverse WM alterations and cognitive function years before developing to WMH. The results may contribute to future clinical trials aimed at preserving WM integrity.</div></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"46 ","pages":"Article 103768"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158225000385","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

White matter hyperintensities (WMH) may be indicative of age-related cerebrovascular diseases and contribute to cognitive and functional decline. Normal appearing WM (NAWM) adjacent to WMH, termed “penumbra,” is known to be vulnerable to future WMH pathology. WM integrity can be evaluated using multiple magnetic resonance imaging (MRI) modalities. We aimed to identify MRI features predictive of WMH growth and to compare the implications of these features based on spatial proximity to existing WMH versus signal features in baseline NAWM. We used baseline and 5-year follow-up MRI scans in 485 middle-aged participants form the Coronary Artery Risk Development in Young Adults (CARDIA). Multimodal MRI at baseline, including fluid attenuated inversion recovery (FLAIR), diffusion tensor imaging (DTI), and cerebral blood flow (CBF), was measured within WM ROIs including baseline WMH and regions that later developed into new WMH, within and external to the baseline penumbra. Overall, we found that 80% of new WMH appeared within the baseline penumbra. We also found lower fractional anisotropy (FA) and CBF and higher FLAIR and median diffusivity (MD) in NAWM at baseline in regions with subsequent WMH growth compared to those without WMH growth. For NAWM regions defined by signal features, subthreshold FA and suprathreshold MD and FLAIR abnormality at baseline were the most robust predictors of WMH growth. Baseline systolic blood pressure had significant associations with baseline abnormalities in NAWM and subsequently with cognitive decline, particularly for FA and MD measures. The findings support the use of DTI as the predictor of WMH growth, which is correlated with subtle, adverse WM alterations and cognitive function years before developing to WMH. The results may contribute to future clinical trials aimed at preserving WM integrity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroimage-Clinical
Neuroimage-Clinical NEUROIMAGING-
CiteScore
7.50
自引率
4.80%
发文量
368
审稿时长
52 days
期刊介绍: NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging. The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信