Reinforcement learning-based backstepping sliding mode heading control for unmanned sailboats

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Chen-Ming Li , Bao-Lin Zhang , Yan-Long Cao , Bo Yin
{"title":"Reinforcement learning-based backstepping sliding mode heading control for unmanned sailboats","authors":"Chen-Ming Li ,&nbsp;Bao-Lin Zhang ,&nbsp;Yan-Long Cao ,&nbsp;Bo Yin","doi":"10.1016/j.oceaneng.2025.120936","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the problem of heading control for unmanned sailboats using reinforcement learning-based backstepping sliding mode approaches. First, an uncertain dynamic model of unmanned sailboat subject to wind and external disturbances is established. Then, a reinforcement learning-based backstepping sliding mode heading controller (RL-BSMHC) is proposed. The controller consists of three components: backstepping sliding mode heading controller, fixed-threshold dynamic dual mode compensator, and reinforcement learning-based cooperative anti-disturbance component. Simulation results demonstrate that the designed RL-BSMHC is effective to improve the tracking performance of the unmanned sailboat. Moreover, it outperforms some existing heading controllers in tracking accuracy and robustness to unknown disturbances.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"327 ","pages":"Article 120936"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825006493","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of heading control for unmanned sailboats using reinforcement learning-based backstepping sliding mode approaches. First, an uncertain dynamic model of unmanned sailboat subject to wind and external disturbances is established. Then, a reinforcement learning-based backstepping sliding mode heading controller (RL-BSMHC) is proposed. The controller consists of three components: backstepping sliding mode heading controller, fixed-threshold dynamic dual mode compensator, and reinforcement learning-based cooperative anti-disturbance component. Simulation results demonstrate that the designed RL-BSMHC is effective to improve the tracking performance of the unmanned sailboat. Moreover, it outperforms some existing heading controllers in tracking accuracy and robustness to unknown disturbances.
基于强化学习的反步滑模无人帆船航向控制
本文采用基于强化学习的反步滑模方法研究了无人驾驶帆船的航向控制问题。首先,建立了受风和外界扰动影响的无人帆船不确定动力学模型。然后,提出了一种基于强化学习的后退滑模航向控制器(RL-BSMHC)。该控制器由三个部分组成:后退滑模航向控制器、固定阈值动态双模补偿器和基于强化学习的协同抗干扰组件。仿真结果表明,所设计的RL-BSMHC能够有效提高无人帆船的跟踪性能。并且在跟踪精度和对未知干扰的鲁棒性方面优于现有的航向控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信