Minors, connectivity, and diameter in randomly perturbed sparse graphs

IF 1 3区 数学 Q1 MATHEMATICS
Elad Aigner-Horev , Dan Hefetz , Michael Krivelevich
{"title":"Minors, connectivity, and diameter in randomly perturbed sparse graphs","authors":"Elad Aigner-Horev ,&nbsp;Dan Hefetz ,&nbsp;Michael Krivelevich","doi":"10.1016/j.ejc.2025.104152","DOIUrl":null,"url":null,"abstract":"<div><div>Extremal properties of sparse graphs, randomly perturbed by the binomial random graph are considered. It is known that every <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> contains a complete minor of order <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>. We prove that adding <span><math><mrow><mi>ξ</mi><mi>n</mi></mrow></math></span> random edges, where <span><math><mrow><mi>ξ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> is arbitrarily small yet fixed, to an <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> satisfying <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ζ</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>n</mi></mrow></math></span> asymptotically almost surely results in a graph containing a complete minor of order <span><math><mrow><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̃</mo></mrow></mover><mfenced><mrow><mi>n</mi><mo>/</mo><msqrt><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msqrt></mrow></mfenced></mrow></math></span>; this result is tight up to the implicit logarithmic terms.</div><div>For complete topological minors, we prove that there exists a constant <span><math><mrow><mi>C</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that adding <span><math><mrow><mi>C</mi><mi>n</mi></mrow></math></span> random edges to a graph <span><math><mi>G</mi></math></span> satisfying <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, asymptotically almost surely results in a graph containing a complete topological minor of order <span><math><mrow><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><mo>min</mo><mrow><mo>{</mo><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>; this result is tight up to the implicit logarithmic terms.</div><div>Finally, extending results of Bohman, Frieze, Krivelevich, and Martin for the dense case, we analyse the asymptotic behaviour of the vertex-connectivity and the diameter of randomly perturbed sparse graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104152"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000344","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Extremal properties of sparse graphs, randomly perturbed by the binomial random graph are considered. It is known that every n-vertex graph G contains a complete minor of order Ω(n/α(G)). We prove that adding ξn random edges, where ξ>0 is arbitrarily small yet fixed, to an n-vertex graph G satisfying α(G)ζ(ξ)n asymptotically almost surely results in a graph containing a complete minor of order Ω̃n/α(G); this result is tight up to the implicit logarithmic terms.
For complete topological minors, we prove that there exists a constant C>0 such that adding Cn random edges to a graph G satisfying δ(G)=ω(1), asymptotically almost surely results in a graph containing a complete topological minor of order Ω̃(min{δ(G),n}); this result is tight up to the implicit logarithmic terms.
Finally, extending results of Bohman, Frieze, Krivelevich, and Martin for the dense case, we analyse the asymptotic behaviour of the vertex-connectivity and the diameter of randomly perturbed sparse graphs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信