Elad Aigner-Horev , Dan Hefetz , Michael Krivelevich
{"title":"Minors, connectivity, and diameter in randomly perturbed sparse graphs","authors":"Elad Aigner-Horev , Dan Hefetz , Michael Krivelevich","doi":"10.1016/j.ejc.2025.104152","DOIUrl":null,"url":null,"abstract":"<div><div>Extremal properties of sparse graphs, randomly perturbed by the binomial random graph are considered. It is known that every <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> contains a complete minor of order <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><mi>n</mi><mo>/</mo><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span>. We prove that adding <span><math><mrow><mi>ξ</mi><mi>n</mi></mrow></math></span> random edges, where <span><math><mrow><mi>ξ</mi><mo>></mo><mn>0</mn></mrow></math></span> is arbitrarily small yet fixed, to an <span><math><mi>n</mi></math></span>-vertex graph <span><math><mi>G</mi></math></span> satisfying <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>ζ</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>n</mi></mrow></math></span> asymptotically almost surely results in a graph containing a complete minor of order <span><math><mrow><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̃</mo></mrow></mover><mfenced><mrow><mi>n</mi><mo>/</mo><msqrt><mrow><mi>α</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msqrt></mrow></mfenced></mrow></math></span>; this result is tight up to the implicit logarithmic terms.</div><div>For complete topological minors, we prove that there exists a constant <span><math><mrow><mi>C</mi><mo>></mo><mn>0</mn></mrow></math></span> such that adding <span><math><mrow><mi>C</mi><mi>n</mi></mrow></math></span> random edges to a graph <span><math><mi>G</mi></math></span> satisfying <span><math><mrow><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, asymptotically almost surely results in a graph containing a complete topological minor of order <span><math><mrow><mover><mrow><mi>Ω</mi></mrow><mrow><mo>̃</mo></mrow></mover><mrow><mo>(</mo><mo>min</mo><mrow><mo>{</mo><mi>δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span>; this result is tight up to the implicit logarithmic terms.</div><div>Finally, extending results of Bohman, Frieze, Krivelevich, and Martin for the dense case, we analyse the asymptotic behaviour of the vertex-connectivity and the diameter of randomly perturbed sparse graphs.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104152"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000344","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extremal properties of sparse graphs, randomly perturbed by the binomial random graph are considered. It is known that every -vertex graph contains a complete minor of order . We prove that adding random edges, where is arbitrarily small yet fixed, to an -vertex graph satisfying asymptotically almost surely results in a graph containing a complete minor of order ; this result is tight up to the implicit logarithmic terms.
For complete topological minors, we prove that there exists a constant such that adding random edges to a graph satisfying , asymptotically almost surely results in a graph containing a complete topological minor of order ; this result is tight up to the implicit logarithmic terms.
Finally, extending results of Bohman, Frieze, Krivelevich, and Martin for the dense case, we analyse the asymptotic behaviour of the vertex-connectivity and the diameter of randomly perturbed sparse graphs.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.