Chirapha Prakobdi, Laura Dhellemmes, Laurent Leclercq, Gaulthier Rydzek, Hervé Cottet
{"title":"Surfactant-based coatings for protein separation by capillary electrophoresis - A review","authors":"Chirapha Prakobdi, Laura Dhellemmes, Laurent Leclercq, Gaulthier Rydzek, Hervé Cottet","doi":"10.1016/j.aca.2025.343945","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Capillary electrophoresis (CE) is a highly efficient and versatile analytical method for the separation of biomacromolecules such as proteins and peptides. One major concern to reach high separation efficiency is the adsorption of analytes on the capillary wall and the heterogeneity of the capillary surface charge which generates hydrodynamic dispersion due to local electroosmotic (EOF) fluctuations.<h3>Results</h3>Double chain surfactants have been described as potential interesting candidates for capillary coatings in CE. They are notably offering a very homogenous surface charge leading to very high separation efficiency with reported values up to 1 million plates per meter.<h3>Significance</h3>This review provides an overview of double chain surfactant coatings used in CE with an emphasis on the coating protocol, the nature of the surfactant, the preparation of the coating solution (concentration, temperature, sonication or extrusion), the physicochemical parameters affecting their properties (pH, ionic strength, nature of the anion in the coating solution, coating additives, capillary internal diameter), and the coating stability / durability.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"183 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343945","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Capillary electrophoresis (CE) is a highly efficient and versatile analytical method for the separation of biomacromolecules such as proteins and peptides. One major concern to reach high separation efficiency is the adsorption of analytes on the capillary wall and the heterogeneity of the capillary surface charge which generates hydrodynamic dispersion due to local electroosmotic (EOF) fluctuations.
Results
Double chain surfactants have been described as potential interesting candidates for capillary coatings in CE. They are notably offering a very homogenous surface charge leading to very high separation efficiency with reported values up to 1 million plates per meter.
Significance
This review provides an overview of double chain surfactant coatings used in CE with an emphasis on the coating protocol, the nature of the surfactant, the preparation of the coating solution (concentration, temperature, sonication or extrusion), the physicochemical parameters affecting their properties (pH, ionic strength, nature of the anion in the coating solution, coating additives, capillary internal diameter), and the coating stability / durability.
期刊介绍:
Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.