Aditya Prajapati, Christopher Hahn, Inez M. Weidinger, Yanmei Shi, Yonghyuk Lee, Anastassia N. Alexandrova, David Thompson, Simon R. Bare, Shuai Chen, Shuai Yan, Nikolay Kornienko
{"title":"Best practices for in-situ and operando techniques within electrocatalytic systems","authors":"Aditya Prajapati, Christopher Hahn, Inez M. Weidinger, Yanmei Shi, Yonghyuk Lee, Anastassia N. Alexandrova, David Thompson, Simon R. Bare, Shuai Chen, Shuai Yan, Nikolay Kornienko","doi":"10.1038/s41467-025-57563-6","DOIUrl":null,"url":null,"abstract":"<p>In-situ and <i>operando</i> techniques in heterogeneous electrocatalysis are a powerful tool used to elucidate reaction mechanisms. Ultimately, they are key in determining concrete links between a catalyst’s physical/electronic structure and its activity en route to designing next-generation systems. To this end, the exact execution and interpretation of these lines of experiments is critical as this determines the strength of conclusions that can be drawn and what uncertainties remain. Instead of focusing on how techniques were used to understand systems, as is the case with most reviews on the topic, this work instead initiates a nuanced discussion of 1) how to best carry out each technique and 2) initiate a nuanced analysis of which level of insights can be drawn from the set of in-situ or <i>operando</i> experiments/controls carried out. We focus on several commonly used techniques, including vibrational (IR, Raman) spectroscopy, X-ray absorption spectroscopy and electrochemical mass spectrometry. In addition to this, we include sections of reactor design and the link with theoretical modelling that are applicable across all techniques. While we focus on heterogeneous electrocatalysis, we make links when appropriate to the areas of photo- and thermo-catalytic systems. We highlight common pitfalls in the field, how to avoid them, and what sets of complementary experiments may be used to strengthen the analysis. We end with an overview of what gaps remain in in-situ and <i>operando</i> techniques and what innovations must be made to overcome them.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"69 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57563-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In-situ and operando techniques in heterogeneous electrocatalysis are a powerful tool used to elucidate reaction mechanisms. Ultimately, they are key in determining concrete links between a catalyst’s physical/electronic structure and its activity en route to designing next-generation systems. To this end, the exact execution and interpretation of these lines of experiments is critical as this determines the strength of conclusions that can be drawn and what uncertainties remain. Instead of focusing on how techniques were used to understand systems, as is the case with most reviews on the topic, this work instead initiates a nuanced discussion of 1) how to best carry out each technique and 2) initiate a nuanced analysis of which level of insights can be drawn from the set of in-situ or operando experiments/controls carried out. We focus on several commonly used techniques, including vibrational (IR, Raman) spectroscopy, X-ray absorption spectroscopy and electrochemical mass spectrometry. In addition to this, we include sections of reactor design and the link with theoretical modelling that are applicable across all techniques. While we focus on heterogeneous electrocatalysis, we make links when appropriate to the areas of photo- and thermo-catalytic systems. We highlight common pitfalls in the field, how to avoid them, and what sets of complementary experiments may be used to strengthen the analysis. We end with an overview of what gaps remain in in-situ and operando techniques and what innovations must be made to overcome them.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.