{"title":"Sunlight-driven simultaneous CO2 reduction and water oxidation using indium-organic framework heterostructures","authors":"Zhongjie Cai, Hongwei Liu, Jiajun Dai, Bao Li, Liming Yang, Jingyu Wang, Huaiyong Zhu","doi":"10.1038/s41467-025-57742-5","DOIUrl":null,"url":null,"abstract":"<p>Overall artificial photosynthesis, as a promising approach for sunlight-driven CO<sub>2</sub> recycling, requires photocatalysts with efficient light adsorption and separate active sites for coupling with H<sub>2</sub>O oxidation. Here we show a In-based metal–organic framework (MOF) heterostructure, i.e., In-porphyrin (In-TCPP) nanosheets enveloping an In-NH<sub>2</sub>-MIL-68 (M68N) core, via a facile one-pot synthesis that utilises competitive nucleation and growth of two organic linkers with In nodes. The coherent interfaces of the core@shell MOFs assure the structural stability of heterostructure, which will function as heterojunctions to facilitate the efficient transfer of photogenerated charge for overall photosynthesis. The In-TCPP shell in MOFs heterostructure improves CO<sub>2</sub> adsorption capabilities and visible light absorption to enhance the photocatalytic CO<sub>2</sub> reduction. Simultaneously, In-O sites in M68N core efficiently catalyze H<sub>2</sub>O oxidation, achieving high yields of HCOOH (397.5 μmol g<sup>−1</sup> h<sup>−1</sup>) and H<sub>2</sub>O<sub>2</sub> (321.2 μmol g<sup>−1</sup> h<sup>−1</sup>) under focused sunlight irradiation. The superior performance of this heterostructure in overall photosynthesis, coupled with its straightforward synthesis, shows great potential for mitigating carbon emissions and producing valuable chemicals using solar energy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57742-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Overall artificial photosynthesis, as a promising approach for sunlight-driven CO2 recycling, requires photocatalysts with efficient light adsorption and separate active sites for coupling with H2O oxidation. Here we show a In-based metal–organic framework (MOF) heterostructure, i.e., In-porphyrin (In-TCPP) nanosheets enveloping an In-NH2-MIL-68 (M68N) core, via a facile one-pot synthesis that utilises competitive nucleation and growth of two organic linkers with In nodes. The coherent interfaces of the core@shell MOFs assure the structural stability of heterostructure, which will function as heterojunctions to facilitate the efficient transfer of photogenerated charge for overall photosynthesis. The In-TCPP shell in MOFs heterostructure improves CO2 adsorption capabilities and visible light absorption to enhance the photocatalytic CO2 reduction. Simultaneously, In-O sites in M68N core efficiently catalyze H2O oxidation, achieving high yields of HCOOH (397.5 μmol g−1 h−1) and H2O2 (321.2 μmol g−1 h−1) under focused sunlight irradiation. The superior performance of this heterostructure in overall photosynthesis, coupled with its straightforward synthesis, shows great potential for mitigating carbon emissions and producing valuable chemicals using solar energy.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.