Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics.

Junbang Feng, Xingyan Le, Li Li, Lin Tang, Yuwei Xia, Feng Shi, Yi Guo, Yueqin Zhou, Chuanming Li
{"title":"Automatic Detection of Cognitive Impairment in Patients With White Matter Hyperintensity Using Deep Learning and Radiomics.","authors":"Junbang Feng, Xingyan Le, Li Li, Lin Tang, Yuwei Xia, Feng Shi, Yi Guo, Yueqin Zhou, Chuanming Li","doi":"10.1177/15333175251325091","DOIUrl":null,"url":null,"abstract":"<p><p>White matter hyperintensity (WMH) is associated with cognitive impairment. In this study, 79 patients with WMH from hospital 1 were randomly divided into a training set (62 patients) and an internal validation set (17 patients). In addition, 29 WMH patients from hospital 2 were used as an external validation set. Cognitive status was determined based on neuropsychological assessment results. A deep learning convolutional neural network of VB-Nets was used to automatically identify and segment whole-brain subregions and WMH. The PyRadiomics package in Python was used to automatically extract radiomic features from the WMH and bilateral hippocampi. Delong tests revealed that the random forest model based on combined features had the best performance for the detection of cognitive impairment in WMH patients, with an AUC of 0.900 in the external validation set. Our results provide clinical doctors with a reliable tool for the early diagnosis of cognitive impairment in WMH patients.</p>","PeriodicalId":93865,"journal":{"name":"American journal of Alzheimer's disease and other dementias","volume":"40 ","pages":"15333175251325091"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909688/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of Alzheimer's disease and other dementias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15333175251325091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

White matter hyperintensity (WMH) is associated with cognitive impairment. In this study, 79 patients with WMH from hospital 1 were randomly divided into a training set (62 patients) and an internal validation set (17 patients). In addition, 29 WMH patients from hospital 2 were used as an external validation set. Cognitive status was determined based on neuropsychological assessment results. A deep learning convolutional neural network of VB-Nets was used to automatically identify and segment whole-brain subregions and WMH. The PyRadiomics package in Python was used to automatically extract radiomic features from the WMH and bilateral hippocampi. Delong tests revealed that the random forest model based on combined features had the best performance for the detection of cognitive impairment in WMH patients, with an AUC of 0.900 in the external validation set. Our results provide clinical doctors with a reliable tool for the early diagnosis of cognitive impairment in WMH patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信