Compression and bending performance of selective laser melted Ti6Al4V porous structures with cylindrical thin walls for dental implants.

Zefang Guo, Tianmin Guan, Mingli Liu, David Hui, Yun Zhai
{"title":"Compression and bending performance of selective laser melted Ti6Al4V porous structures with cylindrical thin walls for dental implants.","authors":"Zefang Guo, Tianmin Guan, Mingli Liu, David Hui, Yun Zhai","doi":"10.1088/1748-605X/adc0d5","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium alloy dental implants play a crucial role in the field of oral rehabilitation. However, the use of solid designs can give rise to mechanical problems such as mismatched compressive elastic modulus with the host bone tissue, resulting in stress shielding and stress concentration. These problems have been a persistent bottleneck in their application effectiveness. To overcome this challenge, this study creatively designed five types of porous structures with cylindrical thin wall based on the Gibson-Ashby theoretical model. The aim is to optimize the mechanical performance of dental implants, enhance their compatibility with the host bone tissue, and utilize selective laser melting technology for precise fabrication of porous structures using Ti6Al4V material. Through a combination of simulation analysis and compression experiments, the stress and strain distributions of the five structures are systematically investigated under different bite conditions. The experimental results demonstrate that all five porous structures designed in this study effectively alleviate stress shielding phenomenon in dental implants, significantly improving the bonding performance between the implants and bone tissue. This meets the clinical implantation requirements and provides strong theoretical support for the application of dental implants in clinical settings.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/adc0d5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Titanium alloy dental implants play a crucial role in the field of oral rehabilitation. However, the use of solid designs can give rise to mechanical problems such as mismatched compressive elastic modulus with the host bone tissue, resulting in stress shielding and stress concentration. These problems have been a persistent bottleneck in their application effectiveness. To overcome this challenge, this study creatively designed five types of porous structures with cylindrical thin wall based on the Gibson-Ashby theoretical model. The aim is to optimize the mechanical performance of dental implants, enhance their compatibility with the host bone tissue, and utilize selective laser melting technology for precise fabrication of porous structures using Ti6Al4V material. Through a combination of simulation analysis and compression experiments, the stress and strain distributions of the five structures are systematically investigated under different bite conditions. The experimental results demonstrate that all five porous structures designed in this study effectively alleviate stress shielding phenomenon in dental implants, significantly improving the bonding performance between the implants and bone tissue. This meets the clinical implantation requirements and provides strong theoretical support for the application of dental implants in clinical settings.

用于牙科植入物的选择性激光熔化 Ti6Al4V 圆柱薄壁多孔结构的压缩和弯曲性能。
钛合金种植体在口腔康复领域起着至关重要的作用。然而,使用固体设计会产生机械问题,如与宿主骨组织不匹配的压缩弹性模量,导致应力屏蔽和应力集中。这些问题一直是制约其应用效果的瓶颈。为了克服这一挑战,本研究基于Gibson-Ashby理论模型,创造性地设计了五种圆柱形薄壁多孔结构。目的是优化牙种植体的力学性能,提高其与宿主骨组织的相容性,并利用选择性激光熔化技术精确制造Ti6Al4V材料的多孔结构。通过模拟分析与压缩实验相结合的方法,系统研究了五种结构在不同咬合条件下的应力应变分布。实验结果表明,本研究设计的5种多孔结构均能有效缓解种植体中的应力屏蔽现象,显著提高种植体与骨组织的结合性能。这满足了临床种植需求,为种植体在临床的应用提供了强有力的理论支持。 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信