Expansion microscopy reveals thylakoid organisation alterations due to genetic mutations and far-red light acclimation\.

IF 3.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jarne Berentsen, Peter R Bos, Emilie Wientjes
{"title":"Expansion microscopy reveals thylakoid organisation alterations due to genetic mutations and far-red light acclimation\\.","authors":"Jarne Berentsen, Peter R Bos, Emilie Wientjes","doi":"10.1016/j.bbabio.2025.149552","DOIUrl":null,"url":null,"abstract":"<p><p>The thylakoid membrane is the site of the light-dependent reactions of photosynthesis. It is a continuous membrane, folded into grana stacks and the interconnecting stroma lamellae. The CURVATURE THYLAKOID1 (CURT1) protein family is involved in the folding of the membrane into the grana stacks. The thylakoid membrane remodels its architecture in response to light conditions, but its 3D organisation and dynamics remain incompletely understood. To resolve these details, an imaging technique is needed that provides high-resolution 3D images in a high-throughput manner. Recently, we have used expansion microscopy, a technique that meets these criteria, to visualise the thylakoid membrane isolated from spinach. Here, we show that this protocol can also be used to visualise enveloped spinach chloroplasts. Additionally, we present an improved protocol for resolving the thylakoid structure of Arabidopsis thaliana. Using this protocol, we show the changes in thylakoid architecture in response to long-term far-red light acclimation and due to knocking out CURT1A. We show that far-red light acclimation results in higher grana stacks that are packed closer together. In addition, the distance between stroma lamellae, which are wrapped around the grana, decreases. In the curt1a mutant, grana have an increased diameter and height, and the distance between grana is increased. Interestingly, in this mutant, the stroma lamellae occasionally approach the grana stacks from the top. These observations show the potential of expansion microscopy to study the thylakoid membrane architecture.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":" ","pages":"149552"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2025.149552","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The thylakoid membrane is the site of the light-dependent reactions of photosynthesis. It is a continuous membrane, folded into grana stacks and the interconnecting stroma lamellae. The CURVATURE THYLAKOID1 (CURT1) protein family is involved in the folding of the membrane into the grana stacks. The thylakoid membrane remodels its architecture in response to light conditions, but its 3D organisation and dynamics remain incompletely understood. To resolve these details, an imaging technique is needed that provides high-resolution 3D images in a high-throughput manner. Recently, we have used expansion microscopy, a technique that meets these criteria, to visualise the thylakoid membrane isolated from spinach. Here, we show that this protocol can also be used to visualise enveloped spinach chloroplasts. Additionally, we present an improved protocol for resolving the thylakoid structure of Arabidopsis thaliana. Using this protocol, we show the changes in thylakoid architecture in response to long-term far-red light acclimation and due to knocking out CURT1A. We show that far-red light acclimation results in higher grana stacks that are packed closer together. In addition, the distance between stroma lamellae, which are wrapped around the grana, decreases. In the curt1a mutant, grana have an increased diameter and height, and the distance between grana is increased. Interestingly, in this mutant, the stroma lamellae occasionally approach the grana stacks from the top. These observations show the potential of expansion microscopy to study the thylakoid membrane architecture.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et Biophysica Acta-Bioenergetics
Biochimica et Biophysica Acta-Bioenergetics 生物-生化与分子生物学
CiteScore
9.50
自引率
7.00%
发文量
363
审稿时长
92 days
期刊介绍: BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信