In Situ Imaging of a Single-Atom Wave Packet in Continuous Space.

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Joris Verstraten, Kunlun Dai, Maxime Dixmerias, Bruno Peaudecerf, Tim de Jongh, Tarik Yefsah
{"title":"In Situ Imaging of a Single-Atom Wave Packet in Continuous Space.","authors":"Joris Verstraten, Kunlun Dai, Maxime Dixmerias, Bruno Peaudecerf, Tim de Jongh, Tarik Yefsah","doi":"10.1103/PhysRevLett.134.083403","DOIUrl":null,"url":null,"abstract":"<p><p>We report on the imaging of the in situ spatial distribution of deterministically prepared single-atom wave packets as they expand in a plane, finding excellent agreement with the scaling dynamics predicted by the Schrödinger equation. Our measurement provides a direct and quantitative observation of the textbook free expansion of a one-particle Gaussian wave packet, which we believe has no equivalent in the existing literature. Second, we utilize these expanding wave packets as a benchmark to develop a protocol for the controlled projection of a spatially extended wave function from continuous space onto the sites of a deep optical lattice and subsequent single-atom imaging using quantum gas microscopy techniques. By probing the square modulus of the wave function for various lattice ramp-up times, we show how to obtain a near-perfect projection onto lattice sites. Establishing this protocol represents a crucial prerequisite to the realization of a quantum gas microscope for continuum physics. The method demonstrated here for imaging a wave packet whose initial extent greatly exceeds the pinning lattice spacing, is designed to be applicable to the many-body wave function of interacting systems in continuous space, promising a direct access to their microscopic properties, including spatial correlation functions up to high order and large distances.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"134 8","pages":"083403"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.134.083403","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the imaging of the in situ spatial distribution of deterministically prepared single-atom wave packets as they expand in a plane, finding excellent agreement with the scaling dynamics predicted by the Schrödinger equation. Our measurement provides a direct and quantitative observation of the textbook free expansion of a one-particle Gaussian wave packet, which we believe has no equivalent in the existing literature. Second, we utilize these expanding wave packets as a benchmark to develop a protocol for the controlled projection of a spatially extended wave function from continuous space onto the sites of a deep optical lattice and subsequent single-atom imaging using quantum gas microscopy techniques. By probing the square modulus of the wave function for various lattice ramp-up times, we show how to obtain a near-perfect projection onto lattice sites. Establishing this protocol represents a crucial prerequisite to the realization of a quantum gas microscope for continuum physics. The method demonstrated here for imaging a wave packet whose initial extent greatly exceeds the pinning lattice spacing, is designed to be applicable to the many-body wave function of interacting systems in continuous space, promising a direct access to their microscopic properties, including spatial correlation functions up to high order and large distances.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信