Jianguo Wang, Binbin Wang, Junling Qu, Yanyan Zhang, Chenyang Zhao, Jie Wang, Liang Fang, Jianlin Zhao, Xuetao Gan
{"title":"Second harmonic and sum frequency generation in silicon nitride microring on thin-film lithium niobate.","authors":"Jianguo Wang, Binbin Wang, Junling Qu, Yanyan Zhang, Chenyang Zhao, Jie Wang, Liang Fang, Jianlin Zhao, Xuetao Gan","doi":"10.1364/OL.555906","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate significant second harmonic generation (SHG) and sum frequency generation (SFG) on a thin-film lithium niobate (TFLN) platform by loading a silicon nitride (SiN) microring resonator, which avoids the dry etching of lithium niobate. By optimizing SiN-loaded TFLN waveguide geometry, the phase-matching conditions between the fundamental pump laser and the SHG/SFG signals are designed. Combining with enhancement by the microring resonator, remarkable SHG and SFG signals with conversion efficiencies of 16.43%/W and 5.90%/W are realized, respectively. Compared to traditional TFLN photonic platform, this CMOS-compatible strategy offers an opportunity for achieving large-scale on-chip nonlinear photonic devices based on TFLN.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 6","pages":"2057-2060"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.555906","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate significant second harmonic generation (SHG) and sum frequency generation (SFG) on a thin-film lithium niobate (TFLN) platform by loading a silicon nitride (SiN) microring resonator, which avoids the dry etching of lithium niobate. By optimizing SiN-loaded TFLN waveguide geometry, the phase-matching conditions between the fundamental pump laser and the SHG/SFG signals are designed. Combining with enhancement by the microring resonator, remarkable SHG and SFG signals with conversion efficiencies of 16.43%/W and 5.90%/W are realized, respectively. Compared to traditional TFLN photonic platform, this CMOS-compatible strategy offers an opportunity for achieving large-scale on-chip nonlinear photonic devices based on TFLN.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.