Compact transcription factor cassettes generate functional, engraftable motor neurons by direct conversion.

Cell systems Pub Date : 2025-04-16 Epub Date: 2025-03-13 DOI:10.1016/j.cels.2025.101206
Nathan B Wang, Honour O Adewumi, Brittany A Lende-Dorn, Adam M Beitz, Timothy M O'Shea, Kate E Galloway
{"title":"Compact transcription factor cassettes generate functional, engraftable motor neurons by direct conversion.","authors":"Nathan B Wang, Honour O Adewumi, Brittany A Lende-Dorn, Adam M Beitz, Timothy M O'Shea, Kate E Galloway","doi":"10.1016/j.cels.2025.101206","DOIUrl":null,"url":null,"abstract":"<p><p>Direct conversion generates patient-specific, disease-relevant cell types, such as neurons, that are rare, limited, or difficult to isolate from common and easily accessible cells, such as skin cells. However, low rates of direct conversion and complex protocols limit scalability and, thus, the potential of cell-fate conversion for biomedical applications. Here, we optimize the conversion protocol by examining process parameters, including transcript design; delivery via adeno-associated virus (AAV), retrovirus, and lentivirus; cell seeding density; and the impact of media conditions. Thus, we report a compact, portable conversion process that boosts proliferation and increases direct conversion of mouse fibroblasts to induced motor neurons (iMNs) to achieve high conversion rates of above 1,000%, corresponding to more than ten motor neurons yielded per cell seeded, which we achieve through expansion. Our optimized, direct conversion process generates functional motor neurons at scales relevant for cell therapies (>10<sup>7</sup> cells) that graft with the mouse central nervous system. High-efficiency, compact, direct conversion systems will support scaling to patient-specific, neural cell therapies.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101206"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Direct conversion generates patient-specific, disease-relevant cell types, such as neurons, that are rare, limited, or difficult to isolate from common and easily accessible cells, such as skin cells. However, low rates of direct conversion and complex protocols limit scalability and, thus, the potential of cell-fate conversion for biomedical applications. Here, we optimize the conversion protocol by examining process parameters, including transcript design; delivery via adeno-associated virus (AAV), retrovirus, and lentivirus; cell seeding density; and the impact of media conditions. Thus, we report a compact, portable conversion process that boosts proliferation and increases direct conversion of mouse fibroblasts to induced motor neurons (iMNs) to achieve high conversion rates of above 1,000%, corresponding to more than ten motor neurons yielded per cell seeded, which we achieve through expansion. Our optimized, direct conversion process generates functional motor neurons at scales relevant for cell therapies (>107 cells) that graft with the mouse central nervous system. High-efficiency, compact, direct conversion systems will support scaling to patient-specific, neural cell therapies.

紧凑的转录因子盒式磁带通过直接转化产生功能性的、可移植的运动神经元。
直接转化产生患者特异性的、与疾病相关的细胞类型,如神经元,这些细胞是罕见的、有限的,或难以从常见和容易获得的细胞(如皮肤细胞)中分离出来。然而,低直接转化率和复杂的协议限制了可扩展性,因此限制了生物医学应用中细胞命运转换的潜力。在这里,我们通过检查过程参数来优化转换协议,包括转录设计;通过腺相关病毒(AAV)、逆转录病毒和慢病毒传递;细胞播种密度;以及媒体环境的影响。因此,我们报告了一种紧凑、便携的转化过程,可以促进增殖并增加小鼠成纤维细胞向诱导运动神经元(iMNs)的直接转化,从而实现超过1000%的高转换率,相当于每个细胞种子产生10多个运动神经元,我们通过扩增实现了这一目标。我们优化的直接转化过程产生了与细胞疗法(>107细胞)相关的功能运动神经元,这些细胞移植到小鼠中枢神经系统。高效、紧凑、直接的转换系统将支持扩展到患者特异性的神经细胞疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信