Ubrogepant, erenumab, and eptinezumab antagonize positive inotropic effects of the calcitonin gene-related peptide in the isolated human atrium.

IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Joachim Neumann, Britt Hofmann, Ulrich Gergs
{"title":"Ubrogepant, erenumab, and eptinezumab antagonize positive inotropic effects of the calcitonin gene-related peptide in the isolated human atrium.","authors":"Joachim Neumann, Britt Hofmann, Ulrich Gergs","doi":"10.1007/s00210-025-04029-7","DOIUrl":null,"url":null,"abstract":"<p><p>The calcitonin gene-related peptide (CGRP) is an endogenous peptide that is known to be involved in the development of a migraine. CGRP is also present in the human heart, acts via CGRP receptors, and has been shown to increase the force of contraction (FOC) in isolated, electrically driven human atrial preparations (HAP) from adult patients obtained during open-heart surgery. Here, the hypothesis was tested that the positive inotropic effect (PIE) of CGRP could be attenuated by three anti-migraine drugs, namely ubrogepant, erenumab (both CGRP receptor antagonists), and eptinezumab (a CGRP antagonist). CGRP, cumulatively applied at concentrations ranging from 1 to 100 nM, increased the FOC. In the presence of cilostamide, an inhibitor of phosphodiesterase III, CGRP was more potent and effective than in the absence of cilostamide. Furthermore, when 100 nM CGRP was administered, subsequent application of ubrogepant (1 nM), erenumab (2 nM), and eptinezumab (6 nM) led to a reduction of FOC in HAP. In a more effective way, 1 µM carbachol and 1 µM (-)-N<sup>6</sup>-phenylisopropyladenosine (PIA) attenuated the PIE of CGRP in the presence of cilostamide. Conversely, when we applied first ubrogepant (1 nM), erenumab (2 nM), or eptinezumab (6 nM), then, this pre-incubation attenuated the PIE in HAP of cumulatively applied CGRP compared to CGRP given alone. We conclude that ubrogepant, erenumab, and eptinezumab are functional antagonists of CGRP in HAP at therapeutic concentrations of these anti-migraine drugs. Further investigation is necessary to determine whether this reduction in FOC is beneficial or detrimental for migraine patients.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-04029-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The calcitonin gene-related peptide (CGRP) is an endogenous peptide that is known to be involved in the development of a migraine. CGRP is also present in the human heart, acts via CGRP receptors, and has been shown to increase the force of contraction (FOC) in isolated, electrically driven human atrial preparations (HAP) from adult patients obtained during open-heart surgery. Here, the hypothesis was tested that the positive inotropic effect (PIE) of CGRP could be attenuated by three anti-migraine drugs, namely ubrogepant, erenumab (both CGRP receptor antagonists), and eptinezumab (a CGRP antagonist). CGRP, cumulatively applied at concentrations ranging from 1 to 100 nM, increased the FOC. In the presence of cilostamide, an inhibitor of phosphodiesterase III, CGRP was more potent and effective than in the absence of cilostamide. Furthermore, when 100 nM CGRP was administered, subsequent application of ubrogepant (1 nM), erenumab (2 nM), and eptinezumab (6 nM) led to a reduction of FOC in HAP. In a more effective way, 1 µM carbachol and 1 µM (-)-N6-phenylisopropyladenosine (PIA) attenuated the PIE of CGRP in the presence of cilostamide. Conversely, when we applied first ubrogepant (1 nM), erenumab (2 nM), or eptinezumab (6 nM), then, this pre-incubation attenuated the PIE in HAP of cumulatively applied CGRP compared to CGRP given alone. We conclude that ubrogepant, erenumab, and eptinezumab are functional antagonists of CGRP in HAP at therapeutic concentrations of these anti-migraine drugs. Further investigation is necessary to determine whether this reduction in FOC is beneficial or detrimental for migraine patients.

Ubrogepant、erenumab 和 eptinezumab 可拮抗降钙素基因相关肽在离体人心房中的正性肌力作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
5.60%
发文量
142
审稿时长
4-8 weeks
期刊介绍: Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信