Inverse design fiber-to-chip couplers for the O- and C-bands.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-03-15 DOI:10.1364/OL.550095
Julian Pita, Paulo Dainese, Michaël Ménard
{"title":"Inverse design fiber-to-chip couplers for the O- and C-bands.","authors":"Julian Pita, Paulo Dainese, Michaël Ménard","doi":"10.1364/OL.550095","DOIUrl":null,"url":null,"abstract":"<p><p>High-efficiency fiber-to-chip couplers are essential for high-performance optical interconnects. In this Letter, we experimentally demonstrate two inverse-designed silicon-on-insulator (SOI) couplers tailored for single-mode fibers (SMFs) in the C and O telecommunication bands. The O-band coupler represents the first, to the best of our knowledge, experimental demonstration of a topology-optimized coupler for this band while maintaining a minimum feature size of 120 nm. Both couplers operate at an 8° angle and are optimized for TE polarization. The C-band coupler achieves a coupling efficiency of -3.3 dB with a 3-dB bandwidth of 64 nm, while the O-band coupler reaches -3.4-dB efficiency over a 3-dB bandwidth spanning from 1292 nm to 1355 nm. Measuring 12 μm by 12 μm, these devices are designed using a single optimized silicon layer, reducing fabrication complexity and achieving efficiencies comparable to those of much larger high-performance grating couplers. Their compact size can increase integration density and contribute to reducing fabrication costs. Additionally, these couplers could be suitable for spatial division multiplexing (SDM) interconnects using multicore fibers, where the mode field diameter is compatible with single-mode fibers. They could also be used with multimode fiber configurations, where multiple couplers could be combined to generate higher-order modes.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 6","pages":"1973-1976"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.550095","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

High-efficiency fiber-to-chip couplers are essential for high-performance optical interconnects. In this Letter, we experimentally demonstrate two inverse-designed silicon-on-insulator (SOI) couplers tailored for single-mode fibers (SMFs) in the C and O telecommunication bands. The O-band coupler represents the first, to the best of our knowledge, experimental demonstration of a topology-optimized coupler for this band while maintaining a minimum feature size of 120 nm. Both couplers operate at an 8° angle and are optimized for TE polarization. The C-band coupler achieves a coupling efficiency of -3.3 dB with a 3-dB bandwidth of 64 nm, while the O-band coupler reaches -3.4-dB efficiency over a 3-dB bandwidth spanning from 1292 nm to 1355 nm. Measuring 12 μm by 12 μm, these devices are designed using a single optimized silicon layer, reducing fabrication complexity and achieving efficiencies comparable to those of much larger high-performance grating couplers. Their compact size can increase integration density and contribute to reducing fabrication costs. Additionally, these couplers could be suitable for spatial division multiplexing (SDM) interconnects using multicore fibers, where the mode field diameter is compatible with single-mode fibers. They could also be used with multimode fiber configurations, where multiple couplers could be combined to generate higher-order modes.

用于 O 波段和 C 波段的反向设计光纤芯片耦合器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信