Roya Naderi, Alireza Seyhani, Alireza Shirpoor, Adele Jafari, Kimia Eyvani
{"title":"Effects of curcumin on cyclosporine A-induced oxidative stress, autophagy, and apoptosis in rat heart.","authors":"Roya Naderi, Alireza Seyhani, Alireza Shirpoor, Adele Jafari, Kimia Eyvani","doi":"10.1007/s11033-025-10334-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cyclosporine A (CsA) is a powerful immunosuppressant commonly used as a prophylaxis on transplant. However, it is associated with serious effects, including cardiotoxicity. Curcumin is a bioactive compound known for its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. So, the present study investigated the possible protective effect of curcumin on CsA-induced heart injury in rats, focusing on oxidative stress, autophagy, and apoptosis.</p><p><strong>Methods: </strong>A total of 32 male Wistar rats were divided into control, sham (drug solvent), CsA (30 mg/kg BW), and curcumin + CsA (40 mg/kg BW, 30 mg/kg BW, respectively) groups. After 4 weeks of treatment, the heart was isolated for molecular assays. Immunoblot detected oxidative and autophagic proteins NOX4, hsp-70, beclin-1, and LC3II. The amount of 8-OHdG was measured by ELISA and heart apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining (TUNEL).</p><p><strong>Results: </strong>At the molecular levels, CSA increased the expression of NOX-4, beclin-1, LC3b, and oHdG in heart tissue. In addition, the amount of apoptosis increased in the heart tissue. However, curcumin treatment improved heart injury by significantly downregulating NOX4, LC3b, and decreasing 8-OHdG. Also, curcumin significantly reduced the rate of myocardial apoptosis.</p><p><strong>Conclusion: </strong>To sum up, curcumin appears to protect against CsA-induced cardiotoxicity in rats by reducing oxidative activity, apoptosis, and regulating autophagy.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"310"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10334-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cyclosporine A (CsA) is a powerful immunosuppressant commonly used as a prophylaxis on transplant. However, it is associated with serious effects, including cardiotoxicity. Curcumin is a bioactive compound known for its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. So, the present study investigated the possible protective effect of curcumin on CsA-induced heart injury in rats, focusing on oxidative stress, autophagy, and apoptosis.
Methods: A total of 32 male Wistar rats were divided into control, sham (drug solvent), CsA (30 mg/kg BW), and curcumin + CsA (40 mg/kg BW, 30 mg/kg BW, respectively) groups. After 4 weeks of treatment, the heart was isolated for molecular assays. Immunoblot detected oxidative and autophagic proteins NOX4, hsp-70, beclin-1, and LC3II. The amount of 8-OHdG was measured by ELISA and heart apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining (TUNEL).
Results: At the molecular levels, CSA increased the expression of NOX-4, beclin-1, LC3b, and oHdG in heart tissue. In addition, the amount of apoptosis increased in the heart tissue. However, curcumin treatment improved heart injury by significantly downregulating NOX4, LC3b, and decreasing 8-OHdG. Also, curcumin significantly reduced the rate of myocardial apoptosis.
Conclusion: To sum up, curcumin appears to protect against CsA-induced cardiotoxicity in rats by reducing oxidative activity, apoptosis, and regulating autophagy.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.