Simultaneous Mental Fatigue and Mental Workload Assessment With Wearable High-Density Diffuse Optical Tomography

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Jianan Chen;Huixin Yang;Yunjia Xia;Tingchen Gong;Alexander Thomas;Jia Liu;Wei Chen;Tom Carlson;Hubin Zhao
{"title":"Simultaneous Mental Fatigue and Mental Workload Assessment With Wearable High-Density Diffuse Optical Tomography","authors":"Jianan Chen;Huixin Yang;Yunjia Xia;Tingchen Gong;Alexander Thomas;Jia Liu;Wei Chen;Tom Carlson;Hubin Zhao","doi":"10.1109/TNSRE.2025.3551676","DOIUrl":null,"url":null,"abstract":"Accurately assessing mental states—such as mental workload and fatigue— is crucial for ensuring the reliability and effectiveness of brain-computer interface (BCI)-based applications. Relying on signals from a limited brain region with low spatial resolution may fail to capture the full scope of relevant information. To address this, high-density diffuse optical tomography (HD-DOT), an emerging form of functional near-infrared spectroscopy (fNIRS) was employed in this study, which provides higher spatial resolution for hemodynamic measurements and enables the reconstruction of 3D brain images. An experiment protocol was designed to investigate both mental workload and fatigue, two critical components of cognitive state that often fluctuate concurrently in real-world scenarios. Machine learning methods were applied for subject-specific classification, achieving 95.14% mean accuracy for fatigue/non-fatigue and 97.93% for four n-back tasks using Random Forest, outperforming Support Vector Machines. These results highlight the transformative potential of HD-DOT in advancing multifaceted cognitive state assessment, paving the way for more precise, adaptable, and powerful BCI applications.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1242-1251"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10926712","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10926712/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately assessing mental states—such as mental workload and fatigue— is crucial for ensuring the reliability and effectiveness of brain-computer interface (BCI)-based applications. Relying on signals from a limited brain region with low spatial resolution may fail to capture the full scope of relevant information. To address this, high-density diffuse optical tomography (HD-DOT), an emerging form of functional near-infrared spectroscopy (fNIRS) was employed in this study, which provides higher spatial resolution for hemodynamic measurements and enables the reconstruction of 3D brain images. An experiment protocol was designed to investigate both mental workload and fatigue, two critical components of cognitive state that often fluctuate concurrently in real-world scenarios. Machine learning methods were applied for subject-specific classification, achieving 95.14% mean accuracy for fatigue/non-fatigue and 97.93% for four n-back tasks using Random Forest, outperforming Support Vector Machines. These results highlight the transformative potential of HD-DOT in advancing multifaceted cognitive state assessment, paving the way for more precise, adaptable, and powerful BCI applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信