Jinsu Ann Mathew, Geetha Paul, Joe Jacob, Janesh Kumar, Neelima Dubey, Ninan Sajeeth Philip
{"title":"A new robust AI/ML based model for accurate forensic age estimation using DNA methylation markers.","authors":"Jinsu Ann Mathew, Geetha Paul, Joe Jacob, Janesh Kumar, Neelima Dubey, Ninan Sajeeth Philip","doi":"10.1007/s12024-025-00985-x","DOIUrl":null,"url":null,"abstract":"<p><p>CpG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the 5' → 3' direction. Epigenetic markers based on methylation values at CpG sites are valuable for accurate age prediction and have become essential in forensic science, supporting criminal investigations and human identification. The present study identified 12 CpG sites from a collection of 476,366 CpG sites based on the following criteria: (a) CpG sites were retained if the Pearson correlation coefficient between the methylation values and the chronological age of the individual is greater than 0.85, and (b) if the mutual correlation coefficient between a pair of selected CpG sites is greater than 0.15, only one of them is retained. The identified CpG sites are associated with genes FHL2, ELOVL2, TRIM59, PCDHB1, KLF14, C1orf132, ACSS3, and CCDC102B. To ensure that the predictive accuracy is intrinsic to the selected CpG sites and not model dependent, the identified CpG sites were passed to three different Neural network models. All models achieved comparable accuracy across diverse populations, genders, and health conditions. The model's accuracy and reliability were validated through age predictions on independent datasets. By utilizing a minimal set of CpG sites, this approach offers a robust and efficient solution for forensic age estimation, significantly enhancing the precision and reliability of forensic investigations.</p>","PeriodicalId":12449,"journal":{"name":"Forensic Science, Medicine and Pathology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science, Medicine and Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12024-025-00985-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
CpG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the 5' → 3' direction. Epigenetic markers based on methylation values at CpG sites are valuable for accurate age prediction and have become essential in forensic science, supporting criminal investigations and human identification. The present study identified 12 CpG sites from a collection of 476,366 CpG sites based on the following criteria: (a) CpG sites were retained if the Pearson correlation coefficient between the methylation values and the chronological age of the individual is greater than 0.85, and (b) if the mutual correlation coefficient between a pair of selected CpG sites is greater than 0.15, only one of them is retained. The identified CpG sites are associated with genes FHL2, ELOVL2, TRIM59, PCDHB1, KLF14, C1orf132, ACSS3, and CCDC102B. To ensure that the predictive accuracy is intrinsic to the selected CpG sites and not model dependent, the identified CpG sites were passed to three different Neural network models. All models achieved comparable accuracy across diverse populations, genders, and health conditions. The model's accuracy and reliability were validated through age predictions on independent datasets. By utilizing a minimal set of CpG sites, this approach offers a robust and efficient solution for forensic age estimation, significantly enhancing the precision and reliability of forensic investigations.
期刊介绍:
Forensic Science, Medicine and Pathology encompasses all aspects of modern day forensics, equally applying to children or adults, either living or the deceased. This includes forensic science, medicine, nursing, and pathology, as well as toxicology, human identification, mass disasters/mass war graves, profiling, imaging, policing, wound assessment, sexual assault, anthropology, archeology, forensic search, entomology, botany, biology, veterinary pathology, and DNA. Forensic Science, Medicine, and Pathology presents a balance of forensic research and reviews from around the world to reflect modern advances through peer-reviewed papers, short communications, meeting proceedings and case reports.