Martin Valdearcos, Emily R McGrath, Stephen M Brown Mayfield, Melissa G Jacuinde, Andrew Folick, Rachel T Cheang, Ruoyu Li, Tomas P Bachor, Rachel N Lippert, Allison W Xu, Suneil K Koliwad
{"title":"Microglia mediate the early-life programming of adult glucose control.","authors":"Martin Valdearcos, Emily R McGrath, Stephen M Brown Mayfield, Melissa G Jacuinde, Andrew Folick, Rachel T Cheang, Ruoyu Li, Tomas P Bachor, Rachel N Lippert, Allison W Xu, Suneil K Koliwad","doi":"10.1016/j.celrep.2025.115409","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose homeostasis is, in part, nutritionally programmed during early neonatal life, a critical window for synapse formation between hypothalamic glucoregulatory centers. Although microglia prune synapses throughout the brain, their role in refining hypothalamic glucoregulatory circuits remains unclear. Here, we show that the phagocytic activity of microglia in the mediobasal hypothalamus (MBH) is induced following birth, regresses upon weaning from maternal milk, and is exacerbated by feeding dams a high-fat diet while lactating. In addition to actively engulfing synapses, microglia are critical for refining perineuronal nets (PNNs) within the neonatal MBH. Remarkably, transiently depleting microglia before weaning (postnatal day [P]6-16) but not afterward (P21-31) induces glucose intolerance in adulthood due to impaired insulin responsiveness, which we link to PNN overabundance and reduced synaptic connectivity between hypothalamic glucoregulatory neurons and the pancreatic β cell compartment. Thus, microglia facilitate early-life synaptic plasticity in the MBH, including PNN refinement, to program hypothalamic circuits regulating adult glucose homeostasis.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115409"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115409","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose homeostasis is, in part, nutritionally programmed during early neonatal life, a critical window for synapse formation between hypothalamic glucoregulatory centers. Although microglia prune synapses throughout the brain, their role in refining hypothalamic glucoregulatory circuits remains unclear. Here, we show that the phagocytic activity of microglia in the mediobasal hypothalamus (MBH) is induced following birth, regresses upon weaning from maternal milk, and is exacerbated by feeding dams a high-fat diet while lactating. In addition to actively engulfing synapses, microglia are critical for refining perineuronal nets (PNNs) within the neonatal MBH. Remarkably, transiently depleting microglia before weaning (postnatal day [P]6-16) but not afterward (P21-31) induces glucose intolerance in adulthood due to impaired insulin responsiveness, which we link to PNN overabundance and reduced synaptic connectivity between hypothalamic glucoregulatory neurons and the pancreatic β cell compartment. Thus, microglia facilitate early-life synaptic plasticity in the MBH, including PNN refinement, to program hypothalamic circuits regulating adult glucose homeostasis.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.