New pyrazole-based derivatives targeting MmpL3 transporter in Mycobacterium tuberculosis: design, synthesis, biological evaluation and molecular docking studies.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Sarvan Maddipatla, Puja Kumari Agnivesh, Bulti Bakchi, Srinivas Nanduri, Nitin Pal Kalia, Venkata Madhavi Yaddanapudi
{"title":"New pyrazole-based derivatives targeting MmpL3 transporter in Mycobacterium tuberculosis: design, synthesis, biological evaluation and molecular docking studies.","authors":"Sarvan Maddipatla, Puja Kumari Agnivesh, Bulti Bakchi, Srinivas Nanduri, Nitin Pal Kalia, Venkata Madhavi Yaddanapudi","doi":"10.1007/s11030-025-11152-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the urgent need for new drugs to combat multi-drug-resistant tuberculosis (MDR-TB). Focusing on MmpL3, a protein essential for mycobacterial cell wall synthesis, we designed and synthesised 50 new pyrazole-based amide derivatives. These compounds were then tested for their ability to inhibit the growth of various Mycobacterium tuberculosis (Mtb) strains, including both drug-susceptible and drug-resistant strains (resistant to isoniazid, rifampicin, or both). Two compounds, 15 and 35, emerged as potent inhibitors. They showed strong activity against both drug-susceptible and drug-resistant Mtb strains, with low minimum inhibitory concentration (MIC) values of 2 µg/mL and 2-4 µg/mL, respectively. Importantly, these compounds also demonstrated a high selectivity index, meaning they were significantly more toxic to Mtb cells than to human liver cells (HepG2). Compound 15 further proved to be bactericidal, effectively killing Mtb within six days. Interestingly, compounds 15 and 35 were inactive against lab-generated Mtb strains resistant to SQ109, a known MmpL3 inhibitor. This finding, supported by molecular docking, molecular dynamics simulations, and genetic analysis of the mmpl3 gene in the SQ109-resistant strains, strongly suggests that these novel compounds also target MmpL3. This research highlights the potential of pyrazole-based amides as a promising new class of anti-TB drugs. By targeting MmpL3, these compounds offer a novel mechanism of action to combat drug-resistant TB, potentially leading to improved treatment outcomes.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11152-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the urgent need for new drugs to combat multi-drug-resistant tuberculosis (MDR-TB). Focusing on MmpL3, a protein essential for mycobacterial cell wall synthesis, we designed and synthesised 50 new pyrazole-based amide derivatives. These compounds were then tested for their ability to inhibit the growth of various Mycobacterium tuberculosis (Mtb) strains, including both drug-susceptible and drug-resistant strains (resistant to isoniazid, rifampicin, or both). Two compounds, 15 and 35, emerged as potent inhibitors. They showed strong activity against both drug-susceptible and drug-resistant Mtb strains, with low minimum inhibitory concentration (MIC) values of 2 µg/mL and 2-4 µg/mL, respectively. Importantly, these compounds also demonstrated a high selectivity index, meaning they were significantly more toxic to Mtb cells than to human liver cells (HepG2). Compound 15 further proved to be bactericidal, effectively killing Mtb within six days. Interestingly, compounds 15 and 35 were inactive against lab-generated Mtb strains resistant to SQ109, a known MmpL3 inhibitor. This finding, supported by molecular docking, molecular dynamics simulations, and genetic analysis of the mmpl3 gene in the SQ109-resistant strains, strongly suggests that these novel compounds also target MmpL3. This research highlights the potential of pyrazole-based amides as a promising new class of anti-TB drugs. By targeting MmpL3, these compounds offer a novel mechanism of action to combat drug-resistant TB, potentially leading to improved treatment outcomes.

针对结核分枝杆菌 MmpL3 转运体的吡唑基新衍生物:设计、合成、生物学评价和分子对接研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信