Neha Rawat, Saravanadevi Sivanesan, Gajanan Sitaramji Kanade, Amit Bafana
{"title":"Interaction of environmental fluoride exposure and gut microbes: Potential implication in the development of fluorosis in human subjects.","authors":"Neha Rawat, Saravanadevi Sivanesan, Gajanan Sitaramji Kanade, Amit Bafana","doi":"10.1016/j.fct.2025.115388","DOIUrl":null,"url":null,"abstract":"<p><p>Fluoride exposure primarily occurs through contaminated water and leads to fluorosis, which is a global health concern. After ingestion, fluoride is absorbed via gastrointestinal tract, where it interacts with the gut microbiota. While animal studies have explored fluoride's effects on gut microbiota, no human studies have yet been conducted. Most research emphasizes metagenomic diversity, neglecting isolation and characterization of pure cultures for further applications. Additionally, the association between gut microbiota with fluorosis outcomes in fluoride-exposed populations is unexplored. This study characterizes and compares the cultivable gut microbiota in the fluoride-exposed population with (symptomatic, group II) or without (asymptomatic, group I) signs of skeletal fluorosis along with unexposed control (group III). Group I displayed higher abundance of Firmicutes (58.58 %), group II had predominance of Proteobacteria (61.25 %) while group III showed similar abundance of Proteobacteria (50.38 %) and Firmicutes (49.51 %). On analyzing short-chain fatty acid (SCFA) profiles, group I isolates produced higher isobutyric acid (1.31 ± 0.9 mM) than group II (0.71 ± 0.35 mM), while group II produced more isovaleric acid (0.8 ± 0.41 mM) than group I (0.61 ± 0.08 mM) (p < 0.05). These findings suggest that gut microbiota and SCFAs alteration may influence bone metabolism, affecting the fluorosis progression.</p>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":" ","pages":"115388"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fct.2025.115388","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fluoride exposure primarily occurs through contaminated water and leads to fluorosis, which is a global health concern. After ingestion, fluoride is absorbed via gastrointestinal tract, where it interacts with the gut microbiota. While animal studies have explored fluoride's effects on gut microbiota, no human studies have yet been conducted. Most research emphasizes metagenomic diversity, neglecting isolation and characterization of pure cultures for further applications. Additionally, the association between gut microbiota with fluorosis outcomes in fluoride-exposed populations is unexplored. This study characterizes and compares the cultivable gut microbiota in the fluoride-exposed population with (symptomatic, group II) or without (asymptomatic, group I) signs of skeletal fluorosis along with unexposed control (group III). Group I displayed higher abundance of Firmicutes (58.58 %), group II had predominance of Proteobacteria (61.25 %) while group III showed similar abundance of Proteobacteria (50.38 %) and Firmicutes (49.51 %). On analyzing short-chain fatty acid (SCFA) profiles, group I isolates produced higher isobutyric acid (1.31 ± 0.9 mM) than group II (0.71 ± 0.35 mM), while group II produced more isovaleric acid (0.8 ± 0.41 mM) than group I (0.61 ± 0.08 mM) (p < 0.05). These findings suggest that gut microbiota and SCFAs alteration may influence bone metabolism, affecting the fluorosis progression.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.