{"title":"Epigallocatechin-3-gallate as an effective inhibitor of vascular endothelial dysfunction induced by endothelial-localized myeloperoxidase","authors":"Rong Tian, Ya-Di Yang, Naihao Lu","doi":"10.1016/j.fct.2025.115392","DOIUrl":null,"url":null,"abstract":"<div><div>In inflammatory vasculature, the leukocyte-released myeloperoxidase (MPO) is internalized by endothelial cells and this enzyme promotes endothelial dysfunction by catalytically producing strong oxidant, hypochlorous acid (HOCl). Herein, we developed epigallocatechin-3-gallate (EGCG, the main polyphenolic flavonoid found in green tea) as a novel endothelial-targeted MPO inhibitor. It was shown that culture of MPO and EGCG with vascular endothelial cells could result in their transport into the sub-endothelial space. EGCG significantly suppressed the consumption of enzyme's substrate H<sub>2</sub>O<sub>2</sub> and generation of HOCl catalyzed by endothelial-transcytosed MPO. The binding of EGCG to the hydrophobic domain near the distal active heme cavity of enzyme was proposed by molecular docking and was suggested for the inhibitive effect of flavonoid on MPO activity. In vivo, EGCG attenuated lipopolysaccharide (LPS)-induced endothelial dysfunction in mouse aortas, while it inhibited the infiltration of active MPO into vascular walls. Furthermore, MPO-deficient mice were resistant to the protective effects of EGCG on LPS-induced vascular dysfunction, as compared to wild-type mice. These studies showed that EGCG effectively inhibited local oxidative reactions and endothelial dysfunction catalyzed by vascular-bound MPO. EGCG represents a versatile class of natural antioxidant drugs applicable to target endothelial-transcytosed MPO in inflammatory vasculature.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"200 ","pages":"Article 115392"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691525001590","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In inflammatory vasculature, the leukocyte-released myeloperoxidase (MPO) is internalized by endothelial cells and this enzyme promotes endothelial dysfunction by catalytically producing strong oxidant, hypochlorous acid (HOCl). Herein, we developed epigallocatechin-3-gallate (EGCG, the main polyphenolic flavonoid found in green tea) as a novel endothelial-targeted MPO inhibitor. It was shown that culture of MPO and EGCG with vascular endothelial cells could result in their transport into the sub-endothelial space. EGCG significantly suppressed the consumption of enzyme's substrate H2O2 and generation of HOCl catalyzed by endothelial-transcytosed MPO. The binding of EGCG to the hydrophobic domain near the distal active heme cavity of enzyme was proposed by molecular docking and was suggested for the inhibitive effect of flavonoid on MPO activity. In vivo, EGCG attenuated lipopolysaccharide (LPS)-induced endothelial dysfunction in mouse aortas, while it inhibited the infiltration of active MPO into vascular walls. Furthermore, MPO-deficient mice were resistant to the protective effects of EGCG on LPS-induced vascular dysfunction, as compared to wild-type mice. These studies showed that EGCG effectively inhibited local oxidative reactions and endothelial dysfunction catalyzed by vascular-bound MPO. EGCG represents a versatile class of natural antioxidant drugs applicable to target endothelial-transcytosed MPO in inflammatory vasculature.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.