Metal-Phenolic Coordination mediated Nanoemulsions for All-in-One Drug Delivery.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yeji Jeon, Jun Woo Park, Su Jin Lee, Ayun Seol, Yeojin Kim, Jeong Min Lim, Seong Gyu Choi, Juyong Gwak, Eunji Lee, Sang Myung Woo, Yun-Hee Kim, Dae Youn Hwang, Sungbaek Seo
{"title":"Metal-Phenolic Coordination mediated Nanoemulsions for All-in-One Drug Delivery.","authors":"Yeji Jeon, Jun Woo Park, Su Jin Lee, Ayun Seol, Yeojin Kim, Jeong Min Lim, Seong Gyu Choi, Juyong Gwak, Eunji Lee, Sang Myung Woo, Yun-Hee Kim, Dae Youn Hwang, Sungbaek Seo","doi":"10.1021/acsabm.5c00037","DOIUrl":null,"url":null,"abstract":"<p><p>Combination chemotherapy is a promising strategy for cancer treatment, enhancing antitumor efficacy while minimizing drug resistance and mitigating the risk of single-drug overdose toxicity. Polymeric drug delivery carriers for combination chemotherapy have been developed; however, the synthetic process of amphiphilic polymers is time-consuming and laborious. The polymer entanglement-based drug encapsulation has been limited in achieving a high multidrug encapsulation efficiency because of the intrinsic preference for encapsulation of drugs upon their polarity. Herein, inspired by dynamic bonding and supramolecular assembly of metal-phenolic coordinate bonds at the oil/water interface, nanoemulsions were fabricated via a dropwise emulsion process. The emulsion interface was formulated by the coordinate bonds and created a colloidally stable emulsion with 50-100 nm in diameter for 3 weeks. These nanoemulsions enabled the coencapsulation of anticancer drugs, hydrophilic gemcitabine, and hydrophobic paclitaxel. Moreover, the treatment of dual-drug-encapsulated nanoemulsions reduced cellular viability (57.0 ± 0.0%) compared to that of gemcitabine only encapsulated (84.0 ± 9.9%) and paclitaxel only encapsulated (83.4 ± 7.2%) nanoemulsion treatment, demonstrating the potential of multidrug delivery carriers for synergistic combination therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Combination chemotherapy is a promising strategy for cancer treatment, enhancing antitumor efficacy while minimizing drug resistance and mitigating the risk of single-drug overdose toxicity. Polymeric drug delivery carriers for combination chemotherapy have been developed; however, the synthetic process of amphiphilic polymers is time-consuming and laborious. The polymer entanglement-based drug encapsulation has been limited in achieving a high multidrug encapsulation efficiency because of the intrinsic preference for encapsulation of drugs upon their polarity. Herein, inspired by dynamic bonding and supramolecular assembly of metal-phenolic coordinate bonds at the oil/water interface, nanoemulsions were fabricated via a dropwise emulsion process. The emulsion interface was formulated by the coordinate bonds and created a colloidally stable emulsion with 50-100 nm in diameter for 3 weeks. These nanoemulsions enabled the coencapsulation of anticancer drugs, hydrophilic gemcitabine, and hydrophobic paclitaxel. Moreover, the treatment of dual-drug-encapsulated nanoemulsions reduced cellular viability (57.0 ± 0.0%) compared to that of gemcitabine only encapsulated (84.0 ± 9.9%) and paclitaxel only encapsulated (83.4 ± 7.2%) nanoemulsion treatment, demonstrating the potential of multidrug delivery carriers for synergistic combination therapy.

金属-酚类配位介导的一体化药物输送纳米乳剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信