Coupling Remote Sensing With a Process Model for the Simulation of Rangeland Carbon Dynamics

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Yushu Xia, Jonathan Sanderman, Jennifer D. Watts, Megan B. Machmuller, Andrew L. Mullen, Charlotte Rivard, Arthur Endsley, Haydee Hernandez, John Kimball, Stephanie A. Ewing, Marcy Litvak, Tomer Duman, Praveena Krishnan, Tilden Meyers, Nathaniel A. Brunsell, Binayak Mohanty, Heping Liu, Zhongming Gao, Jiquan Chen, Michael Abraha, Russell L. Scott, Gerald N. Flerchinger, Patrick E. Clark, Paul C. Stoy, Anam M. Khan, E. N. Jack Brookshire, Quan Zhang, David R. Cook, Thomas Thienelt, Bhaskar Mitra, Marguerite Mauritz-Tozer, Craig E. Tweedie, Margaret S. Torn, Dave Billesbach
{"title":"Coupling Remote Sensing With a Process Model for the Simulation of Rangeland Carbon Dynamics","authors":"Yushu Xia,&nbsp;Jonathan Sanderman,&nbsp;Jennifer D. Watts,&nbsp;Megan B. Machmuller,&nbsp;Andrew L. Mullen,&nbsp;Charlotte Rivard,&nbsp;Arthur Endsley,&nbsp;Haydee Hernandez,&nbsp;John Kimball,&nbsp;Stephanie A. Ewing,&nbsp;Marcy Litvak,&nbsp;Tomer Duman,&nbsp;Praveena Krishnan,&nbsp;Tilden Meyers,&nbsp;Nathaniel A. Brunsell,&nbsp;Binayak Mohanty,&nbsp;Heping Liu,&nbsp;Zhongming Gao,&nbsp;Jiquan Chen,&nbsp;Michael Abraha,&nbsp;Russell L. Scott,&nbsp;Gerald N. Flerchinger,&nbsp;Patrick E. Clark,&nbsp;Paul C. Stoy,&nbsp;Anam M. Khan,&nbsp;E. N. Jack Brookshire,&nbsp;Quan Zhang,&nbsp;David R. Cook,&nbsp;Thomas Thienelt,&nbsp;Bhaskar Mitra,&nbsp;Marguerite Mauritz-Tozer,&nbsp;Craig E. Tweedie,&nbsp;Margaret S. Torn,&nbsp;Dave Billesbach","doi":"10.1029/2024MS004342","DOIUrl":null,"url":null,"abstract":"<p>Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long-term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C-cycle processes. Bayesian calibration was conducted using quality-controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass-shrub mixture, and grass-tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (<i>R</i><sup>2</sup> &gt; 0.6, RMSE &lt;390 g C m<sup>−2</sup>) relative to net ecosystem exchange of CO<sub>2</sub> (NEE) (<i>R</i><sup>2</sup> &gt; 0.4, RMSE &lt;180 g C m<sup>−2</sup>). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks with <i>R</i><sup>2</sup> = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long-term network-based monitoring of vegetation biomass, C fluxes, and SOC stocks.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"17 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004342","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and temporal variability tied to rangeland C dynamics as well as limited data availability. We developed the Rangeland Carbon Tracking and Management (RCTM) system to track long-term changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental variable data sets with algorithms representing terrestrial C-cycle processes. Bayesian calibration was conducted using quality-controlled C flux data sets obtained from 61 Ameriflux and NEON flux tower sites from Western and Midwestern US rangelands to parameterize the model according to dominant vegetation classes (perennial and/or annual grass, grass-shrub mixture, and grass-tree mixture). The resulting RCTM system produced higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE <390 g C m−2) relative to net ecosystem exchange of CO2 (NEE) (R2 > 0.4, RMSE <180 g C m−2). Model performance in estimating rangeland C fluxes varied by season and vegetation type. The RCTM captured the spatial variability of SOC stocks with R2 = 0.6 when validated against SOC measurements across 13 NEON sites. Model simulations indicated slightly enhanced SOC stocks for the flux tower sites during the past decade, which is mainly driven by an increase in precipitation. Future efforts to refine the RCTM system will benefit from long-term network-based monitoring of vegetation biomass, C fluxes, and SOC stocks.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信