Preparation of Hybrid Molecularly Imprinted Polymers Based on 3-Triethoxysilylpropyl Methacrylic Amide for Solid-Phase Extraction of Gatifloxacin From Lake Water

IF 2.8 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Meihong Chai, Chang Liu, Liping Zhang, Yi Wang, Xueyan Zhen, Yi Yang, Yanping Huang, Zhaosheng Liu
{"title":"Preparation of Hybrid Molecularly Imprinted Polymers Based on 3-Triethoxysilylpropyl Methacrylic Amide for Solid-Phase Extraction of Gatifloxacin From Lake Water","authors":"Meihong Chai,&nbsp;Chang Liu,&nbsp;Liping Zhang,&nbsp;Yi Wang,&nbsp;Xueyan Zhen,&nbsp;Yi Yang,&nbsp;Yanping Huang,&nbsp;Zhaosheng Liu","doi":"10.1002/jssc.70122","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A novel molecularly imprinted polymer (MIP) against gatifloxacin based on a hybrid monomer (3-triethoxysilylpropyl methacrylic amide, APTES-MAA) was reported. In this study, the imprinted monolith was synthesized with gatifloxacin as template, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and APTES-MAA as functional monomer in a mixture of acetonitrile and isooctane as porogen via an optimization based on density functional theory (DFT). The polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and mercury porosimetry. The resulting hybrid MIPs (HMIPs) showed high affinity and selectivity to the template molecule with an imprinted factor of 16.28 ± 0.53, which was 6.1 times higher than that of the traditional methacrylic acid–based MIP. The MIP was used as an adsorbent in solid-phase extraction of lake water with gatifloxacin. The recovery was 96.52 ± 2.69%. The method exhibits the advantageous features of cost-effectiveness and high sensitivity, rendering it a promising approach for analyzing organic pollutants in water.</p>\n </div>","PeriodicalId":17098,"journal":{"name":"Journal of separation science","volume":"48 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of separation science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jssc.70122","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel molecularly imprinted polymer (MIP) against gatifloxacin based on a hybrid monomer (3-triethoxysilylpropyl methacrylic amide, APTES-MAA) was reported. In this study, the imprinted monolith was synthesized with gatifloxacin as template, ethylene glycol dimethacrylate (EGDMA) as cross-linker, and APTES-MAA as functional monomer in a mixture of acetonitrile and isooctane as porogen via an optimization based on density functional theory (DFT). The polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and mercury porosimetry. The resulting hybrid MIPs (HMIPs) showed high affinity and selectivity to the template molecule with an imprinted factor of 16.28 ± 0.53, which was 6.1 times higher than that of the traditional methacrylic acid–based MIP. The MIP was used as an adsorbent in solid-phase extraction of lake water with gatifloxacin. The recovery was 96.52 ± 2.69%. The method exhibits the advantageous features of cost-effectiveness and high sensitivity, rendering it a promising approach for analyzing organic pollutants in water.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of separation science
Journal of separation science 化学-分析化学
CiteScore
6.30
自引率
16.10%
发文量
408
审稿时长
1.8 months
期刊介绍: The Journal of Separation Science (JSS) is the most comprehensive source in separation science, since it covers all areas of chromatographic and electrophoretic separation methods in theory and practice, both in the analytical and in the preparative mode, solid phase extraction, sample preparation, and related techniques. Manuscripts on methodological or instrumental developments, including detection aspects, in particular mass spectrometry, as well as on innovative applications will also be published. Manuscripts on hyphenation, automation, and miniaturization are particularly welcome. Pre- and post-separation facets of a total analysis may be covered as well as the underlying logic of the development or application of a method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信