Engineering Xylose Isomerase and Reductase Pathways in Yarrowia lipolytica for Efficient Lipid Production

IF 5.7 2区 生物学
Isabel De La Torre, Miguel G. Acedos, Juan J. Cestero, Jorge Barriuso, José L. García
{"title":"Engineering Xylose Isomerase and Reductase Pathways in Yarrowia lipolytica for Efficient Lipid Production","authors":"Isabel De La Torre,&nbsp;Miguel G. Acedos,&nbsp;Juan J. Cestero,&nbsp;Jorge Barriuso,&nbsp;José L. García","doi":"10.1111/1751-7915.70127","DOIUrl":null,"url":null,"abstract":"<p>Xylose is a common monosaccharide in lignocellulosic residues that <i>Yarrowia lipolytica</i> cannot naturally metabolise for lipid production and therefore, heterologous xylose metabolic pathways must be engineered in this yeast to facilitate its consumption. We have compared the metabolic efficiency of two xylose metabolic pathways by developing three recombinant <i>Y. lipolytica</i> strains: one harbouring a xylose reductase pathway, one with a xylose isomerase pathway, and one combining both pathways, and the strains were tested for xylose consumption and lipid production at different scales. The recombinant strain with the reductase pathway that was directly isolated in selective xylose medium showed the highest lipid yield, producing up to 12.8 g/L of lipids, or 43% of the biomass dry weight, without requiring any other xylose consumption adaptive evolution process. This strain achieved a lipid yield of 0.13 g lipids/g xylose, one of the highest yields in yeast reported so far using xylose as the sole carbon and energy source. Although the strain harbouring the isomerase pathway performed better under oxygen-limiting conditions and led to higher lipid intracellular accumulation, it showed a lower xylose uptake and biomass production, rendering a lower yield under non-limiting oxygen conditions. Unexpectedly, the combination of both pathways in the same strain was less effective than the use of the reductase pathway alone.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70127","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70127","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Xylose is a common monosaccharide in lignocellulosic residues that Yarrowia lipolytica cannot naturally metabolise for lipid production and therefore, heterologous xylose metabolic pathways must be engineered in this yeast to facilitate its consumption. We have compared the metabolic efficiency of two xylose metabolic pathways by developing three recombinant Y. lipolytica strains: one harbouring a xylose reductase pathway, one with a xylose isomerase pathway, and one combining both pathways, and the strains were tested for xylose consumption and lipid production at different scales. The recombinant strain with the reductase pathway that was directly isolated in selective xylose medium showed the highest lipid yield, producing up to 12.8 g/L of lipids, or 43% of the biomass dry weight, without requiring any other xylose consumption adaptive evolution process. This strain achieved a lipid yield of 0.13 g lipids/g xylose, one of the highest yields in yeast reported so far using xylose as the sole carbon and energy source. Although the strain harbouring the isomerase pathway performed better under oxygen-limiting conditions and led to higher lipid intracellular accumulation, it showed a lower xylose uptake and biomass production, rendering a lower yield under non-limiting oxygen conditions. Unexpectedly, the combination of both pathways in the same strain was less effective than the use of the reductase pathway alone.

Abstract Image

工程木糖异构酶和还原酶途径在解脂耶氏菌高效脂质生产
木糖是木质纤维素残基中常见的单糖,聚脂耶氏菌不能自然代谢木糖以产生脂质,因此,必须在酵母中设计异源木糖代谢途径以促进其消耗。我们通过培养具有木糖还原酶途径、具有木糖异构酶途径和同时具有木糖异构酶途径的三种重组聚脂酵母菌株,比较了两种木糖代谢途径的代谢效率,并在不同的尺度上对菌株进行了木糖消耗和脂质产生的测试。在选择性木糖培养基中直接分离的还原酶途径重组菌株的脂质产量最高,脂质产量高达12.8 g/L,占生物量干重的43%,无需任何其他木糖消耗适应进化过程。该菌株的脂质产量为0.13 g /g木糖,是迄今为止报道的以木糖为唯一碳和能量来源的酵母中产量最高的菌株之一。虽然具有异构酶途径的菌株在限氧条件下表现较好,导致细胞内脂质积累较高,但在非限氧条件下木糖摄取和生物量产量较低,产量较低。出乎意料的是,在同一菌株中,两种途径的结合比单独使用还原酶途径的效果要差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信